{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# QCoDeS example with Textronix DPO 7200xx scopes \n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "from qcodes.dataset import Measurement, new_experiment, plot_by_id\n", "from qcodes.instrument_drivers.tektronix import (\n", " TektronixDPO70000,\n", " TektronixDPOMeasurement,\n", ")" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Connected to: TEKTRONIX DPO72004C (serial:C600862, firmware:CF:91.1CT FV:10.9.1 Build 16) in 0.66s\n" ] } ], "source": [ "tek = TektronixDPO70000(\"tek3\", \"TCPIP0::169.254.158.44::inst0::INSTR\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "experiment = new_experiment(name=\"DPO_72000_example\", sample_name=\"no sample\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Aqcuiring traces " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# First, determine the number of samples we wish to acquire\n", "tek.channel[0].set_trace_length(1000)\n", "# alternatively, we can set the time over which we\n", "# wish to acquire a trace (uncomment the following line):\n", "# tek.channel[0].set_trace_time(4E-3)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting experimental run with id: 8\n" ] }, { "data": { "text/plain": [ "([,\n", " ],\n", " [None, None])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xv8ZWPd//HXm2mM85hMGnMwDiNUjpMIP4MSIgo3kiaRlEh059BdFN03biXdueUY3SkUooxwY5KcZsbNGMZhBmVyGueRU8Pn98d17WbNnr3395rvfPeePeb9fDz247vWta611mevtfb3s47XUkRgZmbWkyUWdgBmZrZocMIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYfNN0rGSzl3YcdjiQdJjkj7ay3GXknS/pPf2dVzdQNIFkk4srHunpPcvyPzesQkjb2SvSXpF0lN5wS7Xgfl+RdL3c/fNktavDJOkEyX9TdJLksaXrkBJIyVF/j7Vz17t+i7NRMS/R8SBnZ6vpM9LuqWHOuMlvS5plqSXJU2SdLSkpSp1jpf0j7z8XpR0q6TNK8OHSbpI0nOS/p5/aDsXxDeiwfoJSUfm4Z+QdEue51OSzpG0fGX8pSSdn+N+StIRddPfTtIDkl6VdJOk1UrHXYwdBNwcEU8t7EC6wKnA9xZkAu/YhJHtEhHLARsCGwHHdGCemwCTJC0BrAvcXxm2J/AFYCtgEHAb8D/zOf2BEbFc5XNJXwRdSlK/Ts6vl74aEcsDQ4Ajgb2BcZJUqXNJ3jYGA7cAl+eEPij3vwm8H1gZOA34paQ9Ws00Iv5aXTfAB4G3gctylRWBE4FVSdvGMOA/K5M4HhgFrAZsA3xT0g4AklYGLge+Tdp2JgKXlIy7mPsS8/8be6e6CthG0pBeTyEi3pEf4DHgo5X+U4CrK/3jgQMr/Z8Hbqn0B3Aw8DDwAnAGoIL53kP60a4L3Fk37Cjg0kr/+4HXC7/PyBxTvwbD+gN3A4fm/iWBPwPfyf3HA78h/YOZBdwFbFAZf1XSP7WZwKPAYZVhtXF/AbwMHJjLflEX1/7A43lZHQx8CJgMvAj8pC7eLwBTc91rgdV6Wu55eb4OvAW8ArzYZDnNtV5z2QjgVWDnynf6Rd16CFJyOAGYAizRYN39pWQbqIxzHHBTi+GfBu6t9P8N2L7SfwJwce4+CLi1MmxZ4DVgnZ7G7SHGnfO28yJwK7B+Ll8TeB7YuLKNPAuMyf3753U4C3gE+FJlmmOAGcA3gWeAJ4HdgJ2Ah/J0j22wjTXbPh8j/5ZJO7lHA9OB54BLgUFNvtuIvIz6VcouyNvU1XledwBrVoZ/BJgAvJT/fqTFsjsqL/dZwIPAdrl8U9LO4Iv5u/8E6F+3jX+FtI3PyutqzTzOy/k79a9blsfm5f8YsG/d9zmxp/VZGX49MLZ0G57nO/d2xG7/1G1kw4B7gdMrw8fTc8L4PTAwb3gzgR2azGupvIJeIv1De5H0D+qN3P2tXG+1/GNYG3gXKYn9tvD7jKRJwsjDP0D6B7su8C3gdmDJyg/yH8Aeeb7fICWGd5F+gJOA75ASzxqkfwAfrxt3t1x3aRonjJ8CA4DtSf/Yfwu8BxhK+qexda6/GzAtx9kP+Dfm/kfYdLnXr6Mmy2Gu9Vopvxk4ufKdavEvRdrLfzz33w58t8H4q+fY3jcf2+B04PMthv+IOQlhpTz9VSrD9yAnFOB04My68acAu/c0bov5b5zXzYdJOxljSb+bpfLwL5KSwjKkxH5qZdxPkP7JCdiatL3XkssYYHbept6VpzMT+CWwPHlHCVijp+2zwW/58LyOhuV1dxbwqybf7xPAfXVlF5AS1qZ5+7uosg4GkX5D++Vh++T+dzeY9vtIO0irVn4Ha+buTYDN8jRG5mV4eN02fhWwQl4WbwA3kH57K5LOSoytW5Y/zN93a+Dv5O2QSsLoaX3mOj8Gftib/6kR7/yE8Qopg0deIQMrw8fTc8LYstJ/KXB0D/M8EDgtd18HbFo3vD/phx95I3gUWL3w+4zM471Y91m3UudI4IG8kY+qlB8P3F7pX4K057NV3rj+WjevY4CfVca9uW748cybMIZWhj8H7FXpv6z2gwGuAQ6oi+VV8lFGq+Vev46aLKe51mul/GLgnEr8b+bl9wxwI7BJHjYNOLjB+ANybFsUrq+t8va3XJPhH8vrae3cPzxPf0Bdncdy93nASXXT+HNeJi3HbRHjmcAJdWUPkpN77r+KtLM1mco/ngbT+i3wtdw9hrRnX9thWT7H9+FK/UnAbj1tn5Xfci1hTCXvyef+IaRk0+jIe9/qdHPZBcC5lf6dgAdy937Me1bgNhokfWCtvO18lJzYWiybw4ErKv1zbUd5WRxV6f8B8KPKspwNLFv3m/h25fvUEkbJ+vw+cH7JNtzo806/hrFbpHPZY4B1SKcc5kf1QtmrQMOL5pIulvQiaYUdKOklYDvgOkl3VqoeRzpVM5z0D+i7wI2SlpmPmFaOiIGVz9TKsAtJ/8DHRcTDdeM9XuuIiLdJh7mrko56Vs0XYl/M3+NYYJVG47bwdKX7tQb9tWW3GnB6ZV7Pk/ZSh1bqFy33+TQ0z6vm0rz83hMR20bEpFz+LOmfUL0hleElxgKXRcQr9QMkbUba294jIh7KxbV6K1SqrkDa4akNrw6rDu9p3GZWA46sW/fDSdtFzTmko9f/iog3Kt9hR0m3S3o+j7cTc/++nouIt3L3a/lvs20Cmm+fjWK+ohLvVNJR/SoN6r5ASlb1mm1fq5JOO1b9hbm3zVqM00iJ4Hjgmfw/YFUASWtL+n2++eBl4N+Z939P6e8F4IWI+HtdTM2WTU/rc3nSjlKvvNMTBgAR8UdSJj61Uvx30qF2Ta9vu4uIvZlzODsQ+BzpMHlgRGxaqboB6WLrjIiYHREXkE4nrNfbedf5b9LpnI9L2rJu2PBaR74gPwx4gvRDfbQuCS0fETtVv2IfxUee35fq5rd0RNxaMG6v4pA0nHSa4E8F1f8X2D0vo6p/IcX+0LyjzDO/pUk3OFzYYNhGpL32L0TEDbXyiHiBtFe9QaX6BsB9ufu+6jBJy5JOCd1XMG4zjwPfr1sXy0TEr/I8liOdNjsPOD7fEEC+4+wy0u9plYgYCIwjJf7earZ9Nop5x7qYB0TE3xrUnQysMR83ajxB+qdbNYJ0nWIeEfHLiNgyjxPAyXnQmaQj/VERsQJpB2xBls1KeX1XY2q2bJquz2xd0nXWXlksEkb2I+BjkjbM/XcDn5a0jKS1gAMWcPrrAtPzXtXGpLtY6k0A9pS0iqQlJO1HOmc7Df55u+f43sw8T2sT0imKw4ALNfdtxJtI+nT+8RxOOm96O3An8LKkoyQtLWlJSR+Q9KHexFHgp8AxyrcTS1pR0p6F4z4NDJPUv6RyXrdbA1eSvue4gtFOI+2dnyfpvZIGSNqHdF3oXyMf1/fgU6S9uJvq4vkA8AfSzQm/azDez4F/k7SSpHVI5/4vyMOuAD4gaXdJA0jXByZHxAMF4zZzDnCwpA/nO8SWzbf+1vbKTwcmRbqF+mrSuoN0anUp0nWJ2ZJ2JF27WhDNts96PwW+X7ulWNJgSbs2mmBEzCBdWN600fAGxgFrS/qMpH5Kt6yvR9oJm4uk90naNifP10lHBbUjquVJF69fyeviy4Xzb+W7kvpL2op0YfvXDeq0XJ851k1IF757ZbFJGBExk/Sj+nYuOo10Hvtp0p7gRQs4i01IF7QhJYxJDeqcTMrutbsYvg7sHhG1Q8ThpPPSrbyoue/zP0LSCFJC/FxEvBIRvyQlrNMq410J7MWci3qfjoh/5AS3C+nW40dJp1zOJV1863MRcQVpOVycD9enADsWjn4jaa/5KUmtTg39RNIs0rr9EWlveId8qqOn+J4DtiSdMryfdD3mCGC/KL+FeSzw8wbJ5UjSbbznVdZf9SjgONKF8r8AfwT+MyL+kOOaSbrA/X3SOvww6XbhHsdt8V0nkhLLT/I0p5F2OMj/hHcg3bFGXgYbS9o3ImaRdkouzeN9hnTUtCAabp8N6p2e53VdXse3k5ZFM2fl6fUor/udSevpOdJdXjtHRKNtbSngJNLv5SnSDR7H5mHfIC2TWaR/4gt66/tTpOXyBOn/1MGVHYVq/E3XZ/ZJYHxENDo6KaKyHSbrBEl3ky7oPdfH0z0eWCsiPtuX0zXrC+3cPvNe9f+RfldP9vX0203SGNINJsP6YFp3kG44mdLbaSwKD2EtNiJiw55rmVmpfKG+r64RLtIiotWRWJHF5pSUWV+QtJXmbf7jFUnz3A3VDZTa/WoU7zULOzZb9HTslFS+UHcz6dxfP+A3EXGcpNVJ98gPIl0D2C8i3syHkj8nXRuo3df/WEeCNTOzeXTyCOMNYNuI2IB0gXUHpfvRTyY97DaKdKGmdrfSAaT7j9ciXbw9ucE0zcysQxbKRW+lB9VuId1udjXw3oiYrdRi6PER8XFJ1+bu2/Ktdk8Bg1vd1rjyyivHyJEjO/ANzMzeOSZNmvRsRAzuqV5HL3pLWpJ0u+lapAbAppMakZudq8xgzlOVQ8lPf+Zk8hLwbuqetJV0EKlhNkaMGMHEiY0efzAzs2Yk1T/h3lBHL3pHxFv5TqBhpIdp1m1ULf9t9GTkPEcXEXF2RIyOiNGDB/eYIM3MrJcWyl1S+UG18aQWHQdWHt2vNgcwg9xcQB6+InO3BWRmZh3UsYSRH+EfmLuXJrXyOJXUfELtxTRjSU98Qnqac2zu3gO4sbBZBjMza4NOXsMYQmrfaElSoro0In4v6X5SMxEnkp7IPC/XPw/4H0nTSEcWezeaqJmZdUbHEkZETCa9JrW+/BEaNA4WEa+TWvw0M7Mu4Ce9zcysiBOGmZkVccIwM7MiThhmZlbECcPMzIr4fRhmbbTvObfx5+lznjfdYs1BXPTFzRdiRGa95yMMszapTxYAf57+PPuec9tCishswThhmLVJfbLoqdys2zlhmJlZEScMMzMr4oRhZmZFnDDMzKyIE4aZmRVxwjAzsyJOGGZmVsQJw8zMijhhmJlZEScMMzMr4oRhZmZFnDDMzKyIE4aZmRVxwjAzsyJOGGZmVsQJw8zMijhhmJlZEScMMzMr4oRhZmZFOpYwJA2XdJOkqZLuk/S1XD5I0vWSHs5/V8rlkvRjSdMkTZa0cadiNTOzeXXyCGM2cGRErAtsBhwiaT3gaOCGiBgF3JD7AXYERuXPQcCZHYzVzMzqdCxhRMSTEXFX7p4FTAWGArsCF+ZqFwK75e5dgZ9HcjswUNKQTsVrZmZzWyjXMCSNBDYC7gBWiYgnISUV4D252lDg8cpoM3JZ/bQOkjRR0sSZM2e2M2wzs8VaxxOGpOWAy4DDI+LlVlUblMU8BRFnR8ToiBg9ePDgvgrTzMzqdDRhSHoXKVlcFBGX5+Kna6ea8t9ncvkMYHhl9GHAE52K1czM5tbJu6QEnAdMjYgfVgZdBYzN3WOBKyvln8t3S20GvFQ7dWVmZp3Xr4Pz2gLYD7hX0t257FjgJOBSSQcAfwX2zMPGATsB04BXgf07GKuZmdXpWMKIiFtofF0CYLsG9QM4pK1BmZlZMT/pbWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysSMcShqTzJT0jaUqlbJCk6yU9nP+ulMsl6ceSpkmaLGnjTsVpZmaNdfII4wJgh7qyo4EbImIUcEPuB9gRGJU/BwFndihGMzNromMJIyJuBp6vK94VuDB3XwjsVin/eSS3AwMlDelMpGZm1ki/VgMlDQP2BrYCVgVeA6YAVwPXRMTbCzj/VSLiSYCIeFLSe3L5UODxSr0ZuezJBZyfmZn1UtMjDEk/A84H3gROBvYBvgL8L+nU0i2S/l+b4lKDsmgS50GSJkqaOHPmzDaFY2ZmrY4wfhARUxqUTwEul9QfGLGA839a0pB8dDEEeCaXzwCGV+oNA55oNIGIOBs4G2D06NENk4qZmS24VtcwdsinpBqKiDcjYtoCzv8qYGzuHgtcWSn/XL5bajPgpdqpKzMzWzhaHWEMBW6T9CjwK+DXEfFsb2ck6VfAGGBlSTOA44CTgEslHQD8FdgzVx8H7ARMA14F9u/tfM3MrG80TRgR8XVJRwD/j3Th+9uS7iEljysiYtb8zCgi9mkyaLsGdQM4ZH6mb2Zm7dXyttp8W+sfI+LLpGsKPwK+DjzdieDMzKx7tLyttkbSB0lHGXsBzwHHtjMoMzPrPk0ThqRRpCSxD/AWcDGwfUQ80qHYzMysi7Q6wriWdL1ir4i4t0PxmJlZl2p10XuNar+kFar1I6K+mQ8zM3sH6/EahqQvAd8jNQtSezAugDWajmRmZu84JRe9vwG8f0GewTAzs0VfSWu100kPz5mZ2WKs5AjjGOBWSXcAb9QKI+KwtkVlZmZdpyRhnAXcCNwLLGhz5mZmtogqSRizI+KItkdiZmZdreQaxk35nRND8ju4B0ka1PbIzMysq5QcYXwm/z2mUubbas3MFjM9JoyIWL0TgZiZWXdr9YrWLVuNKGkFSR/o+5DMzKwbtTrC2F3SKcAfgEnATGAAsBawDbAacGTbIzQzs67Q0wuUVgL2IL0JbwipeZCpwFkRcUtnQjQzs27Q8hpGRLwAnJM/Zma2GCu5rdbMzMwJw8zMyjhhmJlZkR4ThqRlJH1b0jm5f5SkndsfmpmZdZOSI4yfkVqp3Tz3zwBObFtEZmbWlUoSxpoRcQrwD4CIeA1QW6MyM7OuU5Iw3pS0NPn1rJLWpPJeDDMzWzyUND54HOlp7+GSLgK2AD7fzqDMzKz7lDQ+eL2ku4DNSKeivub3e5uZLX5aNT64ce1DajfqSeAJYEQuaztJO0h6UNI0SUd3Yp5mZtZYqyOMH+S/A4DRwD2kI4z1gTuAlq3ZLihJSwJnAB8j3Zk1QdJVEXF/O+drZmaNNT3CiIhtImIb4C/AxhExOiI2ATYCpnUgtk2BaRHxSES8CVwM7NqB+ZqZWQMld0mtExH31noiYgqwYftC+qehwOOV/hm5bC759bETJU2cOXNmB8IyM1s8lSSMqZLOlTRG0tb5ie+p7Q6Mxs96xDwFEWfno5/RgwcP7kBYZmaLp5LbavcHvgx8LfffDJzZtojmmAEMr/QPI110NzOzhaDkttrXgdPyp5MmAKMkrQ78Ddgb+EyHYzAzs6zHhCHpURqfClqjLRHNmf5sSV8FrgWWBM6PiPvaOU8zM2uu5JTU6Er3ANLrWge1J5y5RcQ4YFwn5mVmZq31eNE7Ip6rfP4WET8Ctu1AbGZm1kVKTklVn+pegnTEsXzbIjIzs65UckrqB5Xu2cCjwL+0JxwzM+tWJQnjgIh4pFqQ71wyM7PFSMmDe78pLDMzs3ewpkcYktYB3g+sKOnTlUErkO6WMjOzxUirU1LvA3YGBgK7VMpnAV9sZ1BmZtZ9miaMiLgSuFLS5hFxWwdjMjOzLtTqlNQ3I+IU4DOS9qkfHhGHtTUyMzPrKq1OSdVapJ3YiUDMzKy7tTol9bv898LOhWNmZt2q1Smp39Gg0cGaiPhkWyIyM7Ou1OqU1Kkdi8LMzLpeq1NSf6x1S+oPrEM64ngwv2PbzMwWIyWND34C+CkwnfTa1NUlfSkirml3cGZm1j1KGx/cJiKmAUhaE7gacMIwM1uMlLQl9UwtWWSPAM+0KR4zM+tSJUcY90kaB1xKuoaxJzCh1r5URFzexvjMzKxLlCSMAcDTwNa5fybpFa27kBKIE4aZ2WKgx4QREft3IhAzM+tuJXdJrQ4cCoys1veDe2Zmi5eSU1K/Bc4Dfge83d5wzMysW5UkjNcj4sdtj8TMzLpaScI4XdJxwHXAG7XCiLirbVGZmVnXKUkYHwT2A7ZlzimpyP1mZraYKEkYnwLWcPtRZmaLt5Inve8hvdfbzMwWYyUJYxXgAUnXSrqq9pmfmUhaR9Jtkt6Q9I26YTtIelDSNElHV8pXl3SHpIclXZJbzDUzs4Wk5JTUcX0wn+eBw4DdqoWSlgTOAD4GzCA1OXJVRNwPnAycFhEXS/opcABwZh/EYmZmvdDjEUZE/LH6AWYD/zI/M4mIZyJiAvCPukGbAtMi4pF8jeRiYFdJIl1U/02udyF1ycbMzDqr5JQUkjaUdIqkx4ATgal9NP+hwOOV/hm57N3AixExu668UWwHSZooaeLMmTP7KCwzM6vX6p3eawN7A/sAzwGXAIqIbfpw/mpQFi3K5y2MOBs4G2D06NFN30FuZmYLptURxgPAdsAuEbFlRPwX8FbphCUdIunu/Fm1SbUZwPBK/zDgCeBZYKCkfnXlZma2kLRKGLsDTwE3STpH0nY03vNvKCLOiIgN86fZP/sJwKh8R1R/0hHNVRERwE3AHrneWODK0nmbmVnfa5owIuKKiNgLWAcYD3wdWEXSmZK2n5+ZSHqvpBnAEcC/SZohaYV8jeKrwLWk6yKXRsR9ebSjgCMkTSNd0zhvPr+bmZn1oZL3YfwduAi4SNIg0hv3jia1LVUkIp4inVZqNGwcMK5B+SOku6jMzKwLFN0lVRMRz0fEWRHhdqTMzBYz85UwzMxs8eWEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRTqSMCTtK2ly/twqaYPKsB0kPShpmqSjK+WrS7pD0sOSLpHUvxOxmplZY506wngU2Doi1gdOAM4GkLQkcAawI7AesI+k9fI4JwOnRcQo4AXggA7FamZmDXQkYUTErRHxQu69HRiWuzcFpkXEIxHxJnAxsKskAdsCv8n1LgR260SsZmbW2MK4hnEAcE3uHgo8Xhk2I5e9G3gxImbXlc9D0kGSJkqaOHPmzDaFbGZmHU0YkrYhJYyjakUNqkWL8nkLI86OiNERMXrw4MF9E6iZmc2jbQlD0iGS7s6fVSWtD5wL7BoRz+VqM4DhldGGAU8AzwIDJfWrKzczs4WkbQkjIs6IiA0jYkOgH3A5sF9EPFSpNgEYle+I6g/sDVwVEQHcBOyR640FrmxXrGZm1rNOnZL6Dum6xH/nI46JAPkaxVeBa4GpwKURcV8e5yjgCEnT8rjndShWMzNroF/PVRZcRBwIHNhk2DhgXIPyR0h3UZmZWRfwk95mZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYdYmj530ifkqN+t2/RZ2AGbvZE4O9k7iIwwzMyvihGFmZkWcMMzMrIgThpmZFXHCMDOzIh1JGJJ2lTRZ0t2SJkrasjJsrKSH82dspXwTSfdKmibpx5LUiVjNzKyxTh1h3ABsEBEbAl8AzgWQNAg4DvgwsClwnKSV8jhnAgcBo/Jnhw7FamZmDXQkYUTEKxERuXdZoNb9ceD6iHg+Il4Argd2kDQEWCEibsvj/RzYrROxmplZYx27hiHpU5IeAK4mHWUADAUer1SbkcuG5u768kbTPSif5po4c+bMvg/czMyADiaMiLgiItYhHSmckIsbXZeIFuWNpnt2RIyOiNGDBw/um2DNzGwebWsaRNIhwBdz704R8QRARNwsaU1JK5OOHMZURhsGjM/lw+rKn+hpnpMmTXpW0l8WPPq2WRl4dmEHUWBRiRMWnVgXlThh0YnVcfad1Uoqac6lhfaRtBYwPSJC0sbA70hJYCVgErBxrnoXsElEPC9pAnAocAcwDviviBjX9mDbSNLEiBi9sOPoyaISJyw6sS4qccKiE6vj7LxONT64O/A5Sf8AXgP2yhezn5d0AjAh1/teRDyfu78MXAAsDVyTP2ZmtpB0JGFExMnAyU2GnQ+c36B8IvCBNodmZmaF/KR3Z529sAMotKjECYtOrItKnLDoxOo4O6wj1zDMzGzR5yMMMzMr4oRhZmZFnDBakPSvucHEuyVNkfRWbv+qvt4Fkh6t1N2wD+bdtPFFSYdKelDSfZJOaTL+GEkvVWL6Th/EtJSkS3JMd0gaWRm2vqTbckz3ShrQZBr75oYoJ0u6VdIGTep13TJdgPnukKc9TdLRfTzt4ZJukjQ1x/61BnW6clvIdR/Lde6WNLEP4mrWmGl/SWdLekjSA5J2bzGN91WW1d2SXpZ0eF2drl2mbRUR/hR8gF2AG5sMuwDYo5fTPR74fIPyO4HNSU+9XwPsmMu3Af4XWCr3v6fJdMcAv+9lTCOB8Q3KvwL8NHfvDVySu/sBk0kNTAK8G1iyybQ/AqyUu3cE7lhUlmkvY1kSmA6sAfQH7gHW68PpDwE2zt3LAw/VT79bt4U8/DFg5V7ENR4YWVc2CHgk/10pd9e2te8CJ+buJUrnmdffU8Bqi8oybefHRxjl9gF+NT8jSFpW0vmSJkj6P0m7Fo7XqvHFLwMnRcQbABHxzPzElKf/WUl35j2jsyQtWTjqrsCFufs3wHZ5L317YHJE3JNjei4i3mo0gYi4NVJDkwC3M/cT/SWxd+UybWFTYFpEPBIRbwIXk5Zjn4iIJyPirtw9C5hKk3bXGlmY20KLmNaU9AdJkyT9SdI6haM2bMw0D/sC8B85prcjovTJ6+1IDx0XtyDRjcu0rzhhFJC0DGnDu6xFte/n0yynSVoql32LdFTyIdJe7H9KWrZglq0aX1wb2Cofsv5R0odaTGdzSfdIukbS+/N3WRfYC9giUnPzbwH7FsRUi+txgIiYDbxE2ttZGwhJ10q6S9I3C6d3AK0fyOzGZTq/mjVK9dDLAAAFs0lEQVSw2efyKYyNSK0j1OvWbSGA63JyOCiXnQ0cGhGbAN8A/nt+Y8pmAEMlDcz9J+SYfi1plcJp7k3zHcVuXaZt06knvRd1uwB/jjlPodc7hnTY2p+0sR8FfI+0Z/BJSd/I9QYAIyT1A/4nl70XeLNyjnQ7Wje+2I90uL0Z8CHgUklr5L3mqrtIh9GvSNoJ+C3pvSLbAZsAE9LOC0sDzwBIugJYPX+PEZLuztM6PSJ+1iKufsCWOZ5XgRskTYqIG5osLyRtQ0oYWzap0o3LtDeKG9JcoJlIy5F2aA6PiJfrBnfztrBFRDwh6T3A9UotWn8E+LXmXGJaKse0P1C7RrMWME7Sm8CjEfGpHmIaRvoNHyHpCOBUYL8mMZHn1x/4JGlbrNfNy7R9FsZ5sG7+AIcAd+fPqrnsCuAzheOPIZ/bJLWT9b4e6h9P3fl20nnpByr9+wBn5e4/AGMqw6YDg5vFXqn3GKkRtEOB/+ghppE0Psd6LbB57u5HalBNpL2wCyr1vg38a7NlCqyf416725dpH2xPmwPXVvqPAY7p4232XXndHFFYf6FtCwXr7TvAkwV1xzPvNYx/rtPcf1YuE/B3YIlcPhy4r2AeuwLXLcrLtK8/PiVVJyLOiIgN8+cJSSsCWwNXNhsnnx8nn2/cDZiSB10LHJrLkbRRYQxPArMkbZbH/Vxl/r8Fts3TW5u0t/JsfezA25X5bko6/fgc6e2He+Q9OiQNklTUUiVwFVC782QP0qmhyN9zfUnL5D39rYH7K9+nGlc/4HJgv4h4qNmMumWZ9oEJwChJq+c91r1Jy7FP5O9yHjA1In7YpM57u2VbqItrWUnL17pJR493Ao9K2rP2/dTkTroGrgW2l7SS0ps7tycl6yA1eDom19uuWUx1ml637NZl2nYLI0stSh/g88DFDcrHMecI5EbgXtI/tV8Ay+XypUl7ObVh89xVQfM7ekbncaYDP2HOU/n98zymkA6Lt20S91eB+0h35dwOfKQybC/S3v5k0h77ZnXjjqTxHtAA4NfANNIPe43KsM/m+U0BTmmxPM8FXmDOEcfERWWZLsA2tBPp7qXpwLf6eNpbkk5bTK4s052Ag4GDu3xbWCPHdE+u/61cvjrpqO8e0j/G7zQYdzx1Rxi5/As5pmnA/pXy1YCb8/e8ARjRw3JdhpQAVqyUdf0ybffHTYOYmVkRn5IyM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYQZIerfmtDz6lKS/VfpvbdM8N5J0bi/HvVjSqL6OyawV31ZrVkfS8cArEXFqm+fza1ILqvf0Ytytgc9GxBf7PjKzxnyEYdYDSa/kv2OUGie8VOm9Cicpvd/jTqV3FKyZ6w2WdJlSi7oTJG3RYJrLA+vXkoWk45Va4R0v6RFJh+XyZSVdrdTI3RRJe+VJ/An4aH7y16wjvLGZzZ8NgHWB50nvWzg3IjZVenHRocDhwOnAaRFxi6QRpKYd1q2bTu2p86p1SC3wLg88KOlMUivJT0TEJwByUzVExNuSpuV4JvX91zSblxOG2fyZEKldKiRNB67L5feS/tkDfBRYr9La6gqSlo/0voqaIcDMumlfHemdHG9IegZYJU/3VEknk5pB+VOl/jOkxhydMKwjnDDM5s8ble63K/1vM+f3tASp1dHXWkznNVLbQc2m/RbQLyIekrQJqX2o/5B0XUR8L9cZkKdj1hG+hmHW964jNU4HgBq/j3wq6Z0OLUlaFXg1In5BeofDxpXBa5MapDPrCB9hmPW9w4AzJE0m/cZuJrV0+k8R8YCkFRucqqr3QdJbBd8G/kF6nSxKb4x7rXZ6zKwTfFut2UIi6evArIiY72cx8rgvR8R5fR+ZWWM+JWW28JzJ3Nct5seLwIV9GItZj3yEYWZmRXyEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbk/wMjF0ieecNJLQAAAABJRU5ErkJggg==", "text/plain": [ "" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8HFWZ//HPF0IISyAgESELAQybyhoRFIdNkVVQYAAVIoIRRZBFZXEUFJwBRBF/IrIKjgugrEoQGCAiw5YEQyCG5bI4hDUEwiKR9fn9cc41lU5333OT251O8n2/Xv3qqlOnqp6uqu6n1tOKCMzMzHqyxIIOwMzMFg5OGGZmVsQJw8zMijhhmJlZEScMMzMr4oRhZmZFnDCs1yQdL+n8BR2HLR4kPS7pY/M47tKS/ibpPX0dVyeQdJGkkwvr3i3pffMzv0U2YeSNbJakVyU9kxfs8m2Y71ckfT933yppw8owSTpZ0pOSXpI0rnQFShohKfLnqb72adVnaSQi/jMiDm73fCV9XtJtPdQZJ+mfkl6R9LKkiZKOlbR0pc6Jkt7My2+mpNslbVkZPlTSryXNkPSP/EXbtSC+4XXWT0g6Og/fRdJteZ7PSDpP0sDK+EtLujDH/Yyko2qmv72kByS9JukWSWuUjrsYGwPcGhHPLOhAOsDpwPfmZwKLbMLIdouI5YGNgU2A49owz82AiZKWANYH/lYZtjfwBeCjwMrAHcB/93L6gyJi+crr0r4IupSkfu2c3zz6akQMBFYDjgb2BcZKUqXOpXnbGAzcBlyRE/rKuf8N4H3AKsAZwG8k7dVsphHxf9V1A3wAeAe4PFdZETgZWJ20bQwFflCZxInASGANYFvgm5J2BJC0CnAF8G3StjMBuLRk3MXcl+j9d2xRdQ2wraTV5nkKEbFIvoDHgY9V+k8Drq30jwMOrvR/Hrit0h/AIcDDwIvAWYAK5nsv6Uu7PnB3zbBjgMsq/e8D/ln4eUbkmPrVGdYfmAQclvuXBP4X+E7uPxH4PekH5hXgHmCjyvirk37UpgOPAYdXhnWP+yvgZeDgXParmrgOBJ7Iy+oQ4IPAZGAm8NOaeL8ATM11rwfW6Gm55+X5T+Bt4FVgZoPlNMd6zWXDgdeAXSuf6Vc16yFIyeEk4H5giTrr7u8l20BlnBOAW5oM/zRwX6X/SWCHSv9JwCW5ewxwe2XYcsAsYL2exu0hxl3ztjMTuB3YMJevDbwAbFrZRp4Htsn9B+Z1+ArwKPClyjS3AaYB3wSeA54G9gB2Bh7K0z2+zjbWaPt8nPxdJu3kHgs8AswALgNWbvDZhudl1K9SdlHepq7N87oLWLsy/MPAeOCl/P7hJsvumLzcXwEeBLbP5ZuTdgZn5s/+U6B/zTb+FdI2/kpeV2vncV7On6l/zbI8Pi//x4HP1nyek3tan5XhNwKjS7fhuT7zvI7Y6a+ajWwocB9wZmX4OHpOGH8EBuUNbzqwY4N5LZ1X0EukH7SZpB+o13P3t3K9NfKXYR1gKVISu6rw84ygQcLIw99P+oFdH/gWcCewZOUL+SawV57v10mJYSnSF3Ai8B1S4lmL9APwiZpx98h1l6F+wvg5MADYgfTDfhXwbmAI6Udj61x/D6Arx9kP+A/m/CFsuNxr11GD5TDHeq2U3wqcWvlM3fEvTdrLfyL33wl8t874a+bY1u3FNvgI8Pkmw3/M7ISwUp7+qpXhe5ETCnAmcHbN+PcDe/Y0bpP5b5rXzYdIOxmjSd+bpfPwL5KSwrKkxH56ZdxdSD9yArYmbe/dyWUb4K28TS2VpzMd+A0wkLyjBKzV0/ZZ57t8RF5HQ/O6Owf4bYPPtwswpabsIlLC2jxvf7+urIOVSd+h/fOw/XL/u+pMe13SDtLqle/B2rl7M2CLPI0ReRkeUbONXwOskJfF68BNpO/eiqSzEqNrluWP8ufdGvgHeTukkjB6Wp+5zk+AH83Lb2rEop8wXiVl8MgrZFBl+Dh6ThhbVfovA47tYZ4HA2fk7huAzWuG9yd98SNvBI8BaxZ+nhF5vJk1r/UrdY4GHsgb+chK+YnAnZX+JUh7Ph/NG9f/1czrOOAXlXFvrRl+InMnjCGV4TOAfSr9l3d/YYDrgINqYnmNfJTRbLnXrqMGy2mO9VopvwQ4rxL/G3n5PQfcDGyWh3UBh9QZf0CO7SOF6+ujeftbvsHwj+f1tE7uH5anP6CmzuO5+wLglJpp/G9eJk3HbRLj2cBJNWUPkpN77r+GtLM1mcoPT51pXQV8LXdvQ9qz795hGZjj+1Cl/kRgj562z8p3uTthTCXvyef+1UjJpt6R92er081lFwHnV/p3Bh7I3fsz91mBO6iT9IH35m3nY+TE1mTZHAFcWemfYzvKy+KYSv8PgR9XluVbwHI134lvVz5Pd8IoWZ/fBy4s2YbrvRb1axh7RDqXvQ2wHumUQ29UL5S9BtS9aC7pEkkzSSvsYEkvAdsDN0i6u1L1BNKpmmGkH6DvAjdLWrYXMa0SEYMqr6mVYReTfsDHRsTDNeM90d0REe+QDnNXJx31rJ4vxM7Mn+N4YNV64zbxbKV7Vp3+7mW3BnBmZV4vkPZSh1TqFy33XhqS59Xtsrz83h0R20XExFz+POlHqNZqleElRgOXR8SrtQMkbUHa294rIh7Kxd31VqhUXYG0w9M9vDqsOryncRtZAzi6Zt0PI20X3c4jHb3+v4h4vfIZdpJ0p6QX8ng7M+f3a0ZEvJ27Z+X3RtsENN4+68V8ZSXeqaSj+lXr1H2RlKxqNdq+Vieddqz6O3Num90xdpESwYnAc/k3YHUASetI+mO++eBl4D+Z+7en9PsC8GJE/KMmpkbLpqf1OZC0ozRPFvWEAUBE/JmUiU+vFP+DdKjdbZ5vu4uIfZl9ODsIOIB0mDwoIjavVN2IdLF1WkS8FREXkU4nbDCv867xM9LpnE9I2qpm2LDujnxBfijwFOmL+lhNEhoYETtXP2IfxUee35dq5rdMRNxeMO48xSFpGOk0wV8Kqv8PsGdeRlX/Tor9oblHmWt+y5BucLi4zrBNSHvtX4iIm7rLI+JF0l71RpXqGwFTcveU6jBJy5FOCU0pGLeRJ4Dv16yLZSPit3key5NOm10AnJhvCCDfcXY56fu0akQMAsaSEv+8arR91ot5p5qYB0TEk3XqTgbW6sWNGk+RfnSrhpOuU8wlIn4TEVvlcQI4NQ86m3SkPzIiViDtgM3Pslkpr+9qTI2WTcP1ma1Pus46TxaLhJH9GPi4pI1z/yTg05KWlfRe4KD5nP76wCN5r2pT0l0stcYDe0taVdISkvYnnbPtgn/d7jluXmaep7UZ6RTF4cDFmvM24s0kfTp/eY4gnTe9E7gbeFnSMZKWkbSkpPdL+uC8xFHg58BxyrcTS1pR0t6F4z4LDJXUv6RyXrdbA1eTPufYgtHOIO2dXyDpPZIGSNqPdF3oG5GP63vwKdJe3C018bwf+BPp5oQ/1Bnvl8B/SFpJ0nqkc/8X5WFXAu+XtKekAaTrA5Mj4oGCcRs5DzhE0ofyHWLL5Vt/u/fKzwQmRrqF+lrSuoN0anVp0nWJtyTtRLp2NT8abZ+1fg58v/uWYkmDJe1eb4IRMY10YXnzesPrGAusI+kzkvop3bK+AWknbA6S1pW0XU6e/yQdFXQfUQ0kXbx+Na+LLxfOv5nvSuov6aOkC9u/q1On6frMsW5GuvA9TxabhBER00lfqm/nojNI57GfJe0J/no+Z7EZ6YI2pIQxsU6dU0nZvfsuhiOBPSOi+xBxGOm8dDMzNed9/kdJGk5KiAdExKsR8RtSwjqjMt7VwD7Mvqj36Yh4Mye43Ui3Hj9GOuVyPuniW5+LiCtJy+GSfLh+P7BT4eg3k/aan5HU7NTQTyW9Qlq3PybtDe+YT3X0FN8MYCvSKcO/ka7HHAXsH+W3MI8GflknuRxNuo33gsr6qx4FnEC6UP534M/ADyLiTzmu6aQL3N8nrcMPkW4X7nHcJp91Aimx/DRPs4u0w0H+Ed6RdMcaeRlsKumzEfEKaafksjzeZ0hHTfOj7vZZp96ZeV435HV8J2lZNHJOnl6P8rrflbSeZpDu8to1Iupta0sDp5C+L8+QbvA4Pg/7OmmZvEL6EZ/fW9+fIS2Xp0i/U4dUdhSq8Tdcn9kngXERUe/opIjKdpisHSRNIl3Qm9HH0z0ReG9EfK4vp2vWF1q5fea96r+SvldP9/X0W03SNqQbTIb2wbTuIt1wcv+8TmNheAhrsRERG/dcy8xK5Qv1fXWNcKEWEc2OxIosNqekzPqCpI9q7uY/XpU0191QnUCp3a968V63oGOzhY9PSZmZWZG2HWHku03ulnSvpCmSvpvL15R0l6SHJV3afQeMUmNql0rqysNHtCtWMzObW9uOMCSJ9LTiq5KWIjXw9jXS3RdXRMQlkn4O3BsRZ0v6CqkdlEMk7Qt8KiKatsy6yiqrxIgRI1r8SczMFi0TJ058PiIG91SvbRe98y2G3ed5l8qvALYj3YIG6fbWE0kPvuyeuyE1TPZTSWp2H/yIESOYMKHe4w9mZtaIpNon3Otq60Xv/FDYJFIbLDeS7hufGRFv5SrTmP0Y/hBycwF5+EvAu+pMc4ykCZImTJ8+vdUfwcxssdXWhBERb+dbR4eSnr5cv161/F7vUfq5ji4i4tyIGBURowYP7vGIyszM5tECua02P9k8jtQE8CDNbuul2n7MNHL7Mnn4iszZeJyZmbVRO++SGixpUO5ehtQs8FRSezvd/2Q2mtREAKTH/0fn7r2Amwvb8TEzsxZo55Peq5EaxFuSlKgui4g/SvobqV2hk0mP8F+Q618A/LekLtKRxb71JmpmZu3RzrukJpP+V7u2/FHqtCYZEf8kNRFtZmYdwE2DmJlZEScMMzMr4oRhZmZFnDDMzKyI/w/DrIWu+uuT/OD6B3lq5ixWH7QM3/jEuuyxyZCeRzTrQE4YZi1y1V+f5Lgr7mPWm+mvnp+cOYvjrrgPwEnDFko+JWXWIj+4/sF/JYtus958mx9c/+ACishs/jhhmLXIkzNn9arcrNM5YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRdqWMCQNk3SLpKmSpkj6Wi5fWdKNkh7O7yvlckn6iaQuSZMlbdquWM3MbG7tPMJ4Czg6ItYHtgAOlbQBcCxwU0SMBG7K/QA7ASPzawxwdhtjNTOzGm1LGBHxdETck7tfAaYCQ4DdgYtztYuBPXL37sAvI7kTGCRptXbFa2Zmc1og1zAkjQA2Ae4CVo2IpyElFeDdudoQ4InKaNNyWe20xkiaIGnC9OnTWxm2mdlire0JQ9LywOXAERHxcrOqdcpiroKIcyNiVESMGjx4cF+FaWZmNdqaMCQtRUoWv46IK3Lxs92nmvL7c7l8GjCsMvpQ4Kl2xWpmZnNq511SAi4ApkbEjyqDrgFG5+7RwNWV8gPy3VJbAC91n7oyM7P269fGeX0E2B+4T9KkXHY8cApwmaSDgP8D9s7DxgI7A13Aa8CBbYzVzMxqtC1hRMRt1L8uAbB9nfoBHNrSoMzMrJif9DYzsyJOGGZmVsQJw8zMijhhmJlZEScMMzMr4oRhZmZFnDDMzKyIE4aZmRVxwjAzsyJOGGZmVsQJw8zMijhhmJlZEScMMzMr4oRhZmZFnDDMzKyIE4aZmRVxwjAzsyJOGGZmVsQJw8zMijhhmJlZEScMMzMr4oRhZmZFnDDMzKyIE4aZmRVxwjAzsyJOGGZmVsQJw8zMirQtYUi6UNJzku6vlK0s6UZJD+f3lXK5JP1EUpekyZI2bVecZmZWX9OEIWmopK9LulrSeEm3SvqZpF0k9TbZXATsWFN2LHBTRIwEbsr9ADsBI/NrDHB2L+dlZmZ9rOGPvqRfABcCbwCnAvsBXwH+h/TDf5ukfyudUUTcCrxQU7w7cHHuvhjYo1L+y0juBAZJWq10XmZm1vf6NRn2w4i4v075/cAVkvoDw+dz/qtGxNMAEfG0pHfn8iHAE5V603LZ07UTkDSGdBTC8OHzG46ZmTXS7LTSjpKGNhoYEW9ERFcLYgJQvVk2iOPciBgVEaMGDx7conDMzKxZwhgC3JGvW3xZ0iotmP+z3aea8vtzuXwaMKxSbyjwVAvmb2ZmhRomjIg4knTK6dvAhsBkSddJOkDSwD6a/zXA6Nw9Gri6Un5AvltqC+Cl7lNXZma2YDS90ylfdP5zRHyZtMf/Y+BI4NnezkjSb4E7gHUlTZN0EHAK8HFJDwMfz/0AY4FHgS7gPNLFdjMzW4CaXfT+F0kfAPYF9gFmAMf3dkYRsV+DQdvXqRvAob2dh5mZtU7DhCFpJClJ7Ae8DVwC7BARj7YpNjMz6yDNjjCuB34L7BMR97UpHjMz61ANE0ZErFXtl7RCtX5E1D6EZ2Zmi7Aer2FI+hLwPWAWs5+FCGCthiOZmdkip+Si99eB90XE860OxszMOldJA4KPAK+1OhAzM+tsJUcYxwG3S7oLeL27MCIOb1lUZmbWcUoSxjnAzcB9wDutDcfMzDpVScJ4KyKOankkZmbW0UquYdwiaYyk1fI/5K0saeWWR2ZmZh2l5AjjM/n9uEqZb6s1M1vM9JgwImLNdgRiZmadrdlftG7VbERJK0h6f9+HZGZmnajZEcaekk4D/gRMBKYDA4D3AtsCawBHtzxCMzPrCM3akjpS0krAXsDewGqk5kGmAudExG3tCdHMzDpB02sYEfEi6Q+MzmtPOGZm1qlKbqs1MzNzwjAzszJOGGZmVqTHhCFpWUnflnRe7h8padfWh2ZmZp2k5AjjF6RWarfM/dOAk1sWkZmZdaSShLF2RJwGvAkQEbMAtTQqMzPrOCUJ4w1Jy5D/nlXS2lT+F8PMzBYPJY0PnkB62nuYpF8DHwE+38qgzMys85Q0PnijpHuALUinor7m//c2M1v8NEwYkjatKXo6vw+XNDwi7mldWGZm1mmaHWH8ML8PAEYB95KOMDYE7gKatmZrZmaLloYXvSNi24jYFvg7sGlEjIqIzYBNgK52BCdpR0kPSuqSdGw75mlmZvWV3CW1XkTc190TEfcDG7cupETSksBZwE7ABsB+kjZo9XzNzKy+krukpko6H/gV6dbaz5GaOG+1zYGuiHgUQNIlwO7A39owbzMzq1FyhHEgMAX4GnAE6Qf7wFYGlQ0Bnqj0T8tlc5A0RtIESROmT5/ehrDMzBZPJbfV/hM4I7/aqd7T5DFXQcS5wLkAo0aNmmu4mZn1jR4ThqTHqP9DvVZLIpptGjCs0j8UeKrF8zQzswZKrmGMqnQPIP1d68qtCWcO44GRktYEngT2BT7ThvmamVkdPV7DiIgZldeTEfFjYLtWBxYRbwFfBa4nXWS/LCKmtHq+ZmZWX8kpqeoT30uQjjgGtiyiiogYC4xtx7zMzKy5klNSP6x0vwU8Bvx7a8IxM7NOVZIwDup+FqJbvq5gZmaLkZLnMH5fWGZmZouwZq3Vrge8D1hR0qcrg1Yg3S1lZmaLkWanpNYFdgUGAbtVyl8BvtjKoMzMrPM0TBgRcTVwtaQtI+KONsZkZmYdqNkpqW9GxGnAZyTtVzs8Ig5vaWRmZtZRmp2S6m6RdkI7AjEzs87W7JTUH/L7xe0Lx8zMOlWzU1J/oE6jg90i4pMticjMzDpSs1NSp7ctCjMz63jNTkn9ubtbUn9gPdIRx4MR8UYbYjMzsw5S0vjgLsDPgUdIf2q0pqQvRcR1rQ7OzMw6R2njg9tGRBeApLWBawEnDDOzxUhJW1LPdSeL7FHguRbFY2ZmHarkCGOKpLHAZaRrGHsD47vbl4qIK1oYn5mZdYiShDEAeBbYOvdPJ/1F626kBOKEYWa2GOgxYUTEge0IxMzMOlvJXVJrAocBI6r1/eCemdnipeSU1FXABcAfgHdaG46ZmXWqkoTxz4j4ScsjMTOzjlaSMM6UdAJwA/B6d2FE3NOyqMzMrOOUJIwPAPsD2zH7lFTkfjMzW0yUJIxPAWu5/Sgzs8VbyZPe95L+19vMzBZjJUcYqwIPSBrPnNcwfFutmdlipCRhnDC/M5G0HvALYFPgWxFxemXYjsCZwJLA+RFxSi5fE7iE9FT5PcD+Pi1mZrbg9HhKKiL+XH0BbwH/3sv5vAAcTs2fMklaEjgL2AnYANhP0gZ58KnAGRExEngROKiX8zQzsz5Ucg0DSRtLOk3S48DJwNTezCQinouI8cCbNYM2B7oi4tF89HAJsLskke7C+n2udzGwR2/maWZmfavZf3qvA+wL7AfMAC4FFBHb9uH8hwBPVPqnAR8C3gXMjIi3KuVD+nC+ZmbWS82uYTwA/AXYrfLnSUf28fxVpyyalM89AWkMMAZg+PDhfReZmZnNodkpqT2BZ4BbJJ0naXvq/5DXJelQSZPya/UG1aYBwyr9Q4GngOeBQZL61ZTPJSLOjYhRETFq8ODBpeGZmVkvNUwYEXFlROwDrAeMA44EVpV0tqQdeppwRJwVERvnV90fe2A8MFLSmpL6k06BXRMRAdwC7JXrjQauLv5UZmbW50rukvpHRPw6InYl7elPAo7tzUwkvUfSNOAo4D8kTZO0Qr5G8VXgetKF9MsiYkoe7RjgKEldpGsaF/RmnmZm1rdKnsP4l4h4ATgnv3oz3jOkZFNv2FhgbJ3yR0l3UZmZWQcouq3WzMzMCcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWZG2JAxJn5U0Ob9ul7RRZdiOkh6U1CXp2Er5mpLukvSwpEsl9W9HrGZmVl+7jjAeA7aOiA2Bk4BzASQtCZwF7ARsAOwnaYM8zqnAGRExEngROKhNsZqZWR1tSRgRcXtEvJh77wSG5u7Nga6IeDQi3gAuAXaXJGA74Pe53sXAHu2I1czM6lsQ1zAOAq7L3UOAJyrDpuWydwEzI+KtmvK5SBojaYKkCdOnT29RyGZm1taEIWlbUsI4pruoTrVoUj53YcS5ETEqIkYNHjy4bwI1M7O5tCxhSDpU0qT8Wl3ShsD5wO4RMSNXmwYMq4w2FHgKeB4YJKlfTbmZmS0gLUsYEXFWRGwcERsD/YArgP0j4qFKtfHAyHxHVH9gX+CaiAjgFmCvXG80cHWrYjUzs56165TUd0jXJX6WjzgmAORrFF8FrgemApdFxJQ8zjHAUZK68rgXtClWMzOro1/PVeZfRBwMHNxg2FhgbJ3yR0l3UZmZWQfwk95mZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK+KEYWZmRZwwzMysiBOGmZkVccIwM7MiThhmZlbECcPMzIo4YZi1iHpZbtbpnDDMWuSxU3aZKzkol5stjPot6ADMFmVODrYo8RGGmZkVccIwM7MiThhmZlbECcPMzIo4YZiZWREnDDMzK9KWhCFpd0mTJU2SNEHSVpVhoyU9nF+jK+WbSbpPUpekn0jy805mZgtQu44wbgI2ioiNgS8A5wNIWhk4AfgQsDlwgqSV8jhnA2OAkfm1Y5tiNTOzOtqSMCLi1YiI3Lsc0N39CeDGiHghIl4EbgR2lLQasEJE3JHH+yWwRztiNTOz+tp2DUPSpyQ9AFxLOsoAGAI8Uak2LZcNyd215fWmOyaf5powffr0vg/czMyANjYNEhFXAldK+jfgJOBj1G+HLZqU15vuucC5AJKmS/p730TcEqsAzy/oIAosLHHCwhPrwhInLDyxOs6+s0ZJpZYlDEmHAl/MvTtHxFMAEXGrpLUlrUI6ctimMtpQYFwuH1pT/lRP84yIwfMfeetImhARoxZ0HD1ZWOKEhSfWhSVOWHhidZzt17JTUhFxVkRsnC90L9t9l5OkTYH+wAzgemAHSSvli907ANdHxNPAK5K2yOMdAFzdqljNzKxn7ToltSdwgKQ3gVnAPvli9guSTgLG53rfi4gXcveXgYuAZYDr8svMzBaQtiSMiDgVOLXBsAuBC+uUTwDe3+LQ2u3cBR1AoYUlTlh4Yl1Y4oSFJ1bH2WaafbermZlZY24axMzMijhhmJlZESeMJiR9I7d/NUnS/ZLezs2Z1Na7SNJjlbob98G8G7alJekwSQ9KmiLptAbjbyPppUpM3+mDmJaWdGmO6S5JIyrDNpR0R47pPkkDGkzjs7ldscmSbpe0UYN6HbdM52O+O+Zpd0k6to+nPUzSLZKm5ti/VqdOR24Lue7juc4kSRP6IK5GbdP1l3SupIckPSBpzybTWLeyrCZJelnSETV1OnaZtlRE+FXwAnYDbm4w7CJgr3mc7onA5+uU3w1sSXqI8Tpgp1y+LfA/wNK5/90NprsN8Md5jGkEMK5O+VeAn+fufYFLc3c/YDKpvTCAdwFLNpj2h4GVcvdOwF0LyzKdx1iWBB4B1iLdTn4vsEEfTn81YNPcPRB4qHb6nbot5OGPA6vMQ1zjgBE1ZSsDj+b3lXJ397b2XeDk3L1E6Tzz+nsGWGNhWaatfPkIo9x+wG97M4Kk5SRdKGm8pL9K2r1wvGZtaX0ZOCUiXgeIiOd6E1Oe/uck3Z33jM6RtGThqLsDF+fu3wPb5730HYDJEXFvjmlGRLxdbwIRcXukdsMA7mTOBzRLYu/IZdrE5kBXRDwaEW8Al5CWY5+IiKcj4p7c/QowlQbN6NSzILeFJjGtLelPkiZK+ouk9QpHrds2XR72BeC/ckzvRETpk9fbA49ERHELEp24TPuKE0YBScuSNrzLm1T7fj7NcoakpXPZt0hHJR8k7cX+QNJyBbNs1pbWOsBH8yHrnyV9sMl0tpR0r6TrJL0vf5b1gX2Aj0R6qPJt4LOfkLgeAAAFxklEQVQFMXXH9QRARLwFvETa21kHCEnXS7pH0jcLp3cQzZ+v6cRl2luN2kvrc/kUxibAXXUGd+q2EMANOTmMyWXnAodFxGbA14Gf9TambBowRNKg3H9Sjul3klYtnOa+NN5R7NRl2jJta0tqIbcb8L8x+6HCWseRDlv7kzb2Y4DvkfYMPinp67neAGC4pH7Af+ey9wBvVM6Rbk/ztrT6kQ63twA+CFwmaa2811x1D+kw+lVJOwNXkZqJ3x7YDBifdl5YBngOQNKVwJr5cwyXNClP68yI+EWTuPoBW+V4XgNukjQxIm5qsLyQtC0pYWzVoEonLtN5Udwu2nzNRFqetENzRES8XDO4k7eFj0TEU5LeDdyo1EDph4HfafYlpqVzTAcC3ddo3guMlfQG8FhEfKqHmIaSvsNHSToKOB3Yv0FM5Pn1Bz5J2hZrdfIybZ0FcR6sk1/AocCk/Fo9l10JfKZw/G3I5zaBicC6PdQ/kZrz7aTz0g9U+vcDzsndfwK2qQx7BBjcKPZKvcdJjaAdBvxXDzGNoP451uuBLXN3P1KDaiLthV1Uqfdt4BuNlimwYY57nU5fpn2wPW1Jau6mu/844Lg+3maXyuvmqML6C2xbKFhv3wGeLqg7jrmvYfxrneb+c3KZgH8AS+TyYcCUgnnsDtywMC/Tvn75lFSNqLSBFWnPZ0Vga5q0ZZXPj5PPN+4B3J8HXQ8clsuRtElhDM3a0roK2C5Pbx3S3srztbED71Tmuznp9OMM0p9Z7ZX36JC0sqSiliqBa4DuO0/2Ip0aivw5N5S0bN7T3xr4W+XzVOPqB1wB7B8RDzWaUacs0z4wHhgpac28x7ovaTn2ifxZLgCmRsSPGtR5T6dsCzVxLSdpYHc36ejxbuAxSXt3fz41uJOujkZt0wXwB2Y3dLp9o5hqNLxu2anLtOUWRJZamF7A54FL6pSPZfYRyM3AfaQftV8By+fyZUh7Od3D5rqrgsZ39IzK4zwC/JTZT+X3z/O4n3RYvF2DuL8KTCHdlXMn8OHKsH1Ie/uTSXvsW9SMO4L6e0ADgN8BXaQv9lqVYZ/L87sfOK3J8jwfeJHZRxwTFpZlOh/b0M6ku5ceAb7Vx9PeinTaYnJlme4MHAIc0uHbwlo5pntz/W/l8jVJR333kn4Yv1Nn3HHUHGHk8i/kmLqAAyvlawC35s95EzC8h+W6LCkBrFgp6/hl2uqXmwYxM7MiPiVlZmZFnDDMzKyIE4aZmRVxwjAzsyJOGGZmVsQJwwyQ9C7Nbnn0GUlPVvpvb9E8N5F0/jyOe4mkkX0dk1kzvq3WrIakE4FXI+L0Fs/nd6QWVO+dh3G3Bj4XEV/s+8jM6vMRhlkPJL2a37dRapzwMqX/VThF6f897lb6j4K1c73Bki5XalF3vKSP1JnmQGDD7mQh6USlVnjHSXpU0uG5fDlJ1yo1cne/pH3yJP4CfCw/+WvWFt7YzHpnI2B94AXS/y2cHxGbK/1x0WHAEcCZwBkRcZuk4aSmHdavmU73U+dV65Fa4B0IPCjpbFIryU9FxC4AuakaIuIdSV05nol9/zHN5uaEYdY74yO1S4WkR4Abcvl9pB97gI8BG1RaW11B0sBI/1fRbTVges20r430nxyvS3oOWDVP93RJp5KaQflLpf5zpMYcnTCsLZwwzHrn9Ur3O5X+d5j9fVqC1OrorCbTmUVqO6jRtN8G+kXEQ5I2I7UP9V+SboiI7+U6A/J0zNrC1zDM+t4NpMbpAFD9/yOfSvpPh6YkrQ68FhG/Iv2Hw6aVweuQGqQzawsfYZj1vcOBsyRNJn3HbiW1dPovEfGApBXrnKqq9QHSvwq+A7xJ+jtZlP4xblb36TGzdvBttWYLiKQjgVciotfPYuRxX46IC/o+MrP6fErKbME5mzmvW/TGTODiPozFrEc+wjAzsyI+wjAzsyJOGGZmVsQJw8zMijhhmJlZEScMMzMr8v8BGX016awFoHIAAAAASUVORK5CYII=", "text/plain": [ "" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "meas = Measurement(exp=experiment)\n", "meas.register_parameter(tek.channel[0].waveform.trace)\n", "meas.register_parameter(tek.channel[1].waveform.trace)\n", "\n", "with meas.run() as datasaver:\n", " for i in [0, 1]:\n", " datasaver.add_result(\n", " (tek.channel[i].waveform.trace_axis, tek.channel[i].waveform.trace_axis()),\n", " (tek.channel[i].waveform.trace, tek.channel[i].waveform.trace()),\n", " )\n", "\n", " dataid = datasaver.run_id\n", "\n", "plot_by_id(dataid)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "There seems to be something wrong with the `plot_by_id` method. Fixing this is beyond the scope of this PR. Below we show that the driver works properly " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEJCAYAAAB8Pye7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJztvXl4ZFd55/99a9dSVWotVZJK3S11t7pbm21MY5vFbDbYwMSeMGYwgWASEhhmICQZMuMJM0ngl0wIDJOQeSBgQoCQsBicgAPejbHBeGvjpSR1q7ul3lSSqiS1uqq01H5+f9w6arlcWusu5957Ps+jR1Wqq7rn3rr1vee8KzHGIJFIJBJ74TB6ABKJRCLRHyn+EolEYkOk+EskEokNkeIvkUgkNkSKv0QikdgQKf4SiURiQ6T4SyQSiQ2R4i+RSCQ2RIq/RCKR2BCX0QNYj9bWVtbd3W30MCQSicRUPPvss3OMsbbNthNW/Lu7u3H06FGjhyGRSCSmgojObmU7afaRSCQSGyLFXyKRSGyIFH+JRCKxIVL8JRKJxIZI8ZdIJBIbIsVfIpFIbIgUf4lEIrEhUvwlkh3wxPg8jk2njB6GRLJjhE3ykkhE5j1ffRIAcOYz7zB4JBLJzpAzf4lkG2TyRVzzvx9eff6bX3vKwNFYizufOY+D//Ne/MMvThs9FFsgZ/4WhzGGB0bjeMPBNvjcTqOHY2pyhRL+7O4RzKQyaGnwIJXJ4+cn5/Dtp87hN67eY/TwTA1jDJ9/cAy5QgnfefocSowBABq8LrzrlV1wOeU8VW2k+FucZ88u4MPfeha/9dpu/OmvDRg9HFPz8LE4vvvMeQDAvb9/Lc7NL+OWLz+BP/7XKK7e14z9bY0Gj9C8jE6nEE9lAQAnE4v4858cW32tPeDDmw6HjBqaZSFWvsOKxpEjR5gs7LZz/su3f4WnJuaRzZeQzhYAAKf/8u0gIoNHZk5m01m86i8eAgC8+GdvRcDnBgA8d24Bv/6lXyLgc+G5P3krnA55fnfCB77+NH42NotHPvFGtDR6AAAruSKu+cuHUe92oqetAXd95DXwuuTqdTOI6FnG2JHNtpNrKYtxZm4J33vmHO6NTmNPcz1uuqJz9bUXJ5MGjszc/N8HxwAAv/Xa7lXhB4DLu5rwij1NSGUKuOvZSaOGZ2oy+SJ+NjaLkN+L7pZ6BHxuBHxuhAM+fOqmAVyzrwXDsRSOTaeNHqqlkOJvMf7Hv0Tx3++KosSAT9xwCH/x60O47/evBQB885dnjB2cSTk7v4TvPK2Ye25/2+GXvOZwEP7m3VcAAD75wygKxZLu4zM7P3wuBgD4z2/c/7KV6ftf3Y1P3ayYK6MxOXlREyn+FiGeyuDX/t8v8MyZC7jllV145pPX4zX7WwEAh9sDeFX3LvzLczEsLOUMHqm5KJUY3nOHEtb5vQ9dU9XssLelAf/r3/UjX2T4+Pee13uIpucv7z0Op4Nw22u6q74eaarDrno3/ure4xDVTG1GpPhbhJ+fnEM0lsR1fSF88HU9aPN7X/L6TZcr5p+7fiVNE9vhgdEZTCUzOBT240h387rb3XJlF7wuB37y4jTOzS/rOEJzcyKeRnIljzcebFvXH0VEuLqnBYvZAqaTGZ1HaF2k+FuE4VgS9R4nvvTeV6KvI/Cy1991ZDcA4J+fOqf30ExLqcTwse88BwD44nuv3NCZG6x34wu3Kuafj37nV7qMzwp85dEJAMDHr+/dcLsPvWEfAGn6URMp/hZgOVfAN355Bv0dgXUFyud24r1X78HpuSW8cP6iziM0JxNzS8gXGX7vul4cCG0exnnDQDve2h/G8Zk08tL2vympTB53/WoSh9v9uKyracNt+8sTmr9+8IQeQ7MFUvwtwLNnFwAArz3QuuF2v/nqvQCArz8uMyi3wnB5lvn2ofYtbU9EeMdlHcgVSjgZX9RyaJbgJy9OAwB+/RWRTbf1uZ3o7whgLJ5GJl/Uemi2QIq/BeBL4d9+bc+G2x1uD2BfWwN++PwUlnMFPYZmaqKxJLwuBw5sI3lrKBIEcOnGIVmfrz6mmHz4pGQzfu+6A2AMOD4jQz7VQIq/ySmWGP7fw6ewp7kewXr3ptv/7rWK7fSfnjyr9dBMTzSWRF9HYFulBbpbGtDodUnb9CYcn0lhYm4JN13eiXrP1goNDJZvrF985JSWQ7MNUvxNznAsiZV8EVfu2dhmynnHZR0AgH99bkrLYZmeQrGEp09fWJ3JbxWHg9DfGcCjJ2ZlWOIG/OMTyuTjg6/beLW6lkhTHQI+F351dkGeWxWQ4m9yPl92gP3edRtHS3ACPjdueWUXjk2n8OKkdPyux9cfPwMAuHz31m6qa+nvCODchWU8OXFB5VFZg0y+iG8/dQ49rQ3bOr9EhE/ccAjzSzkZ8qkCUvxNznhiEf0dAezbhl36w69XTD9/+/BJrYZlel4o3xh5fsR2+HA5LPHoGSn+1bjzqJIt/d4dVELlph9pVqsdKf4mZn4xi9jFFdx8xfYEqjfsR7DOjUfGpGliPYZjSdwwEIbHtf2vSEewDj2tDVKg1uGhYwkAwH+4smvb/8vDmZ+Sq6qakeJvYj53v1JsbLMY6Wr88dsPo1hist5PFVKZPM7ML2/b3r+WwUhQRvxUgTGG4VgS73plF3Y1eLb9/z63Ez2tDfiHx0/LkM8akeJvYsbiaQR8Llzds37ZgfW4+Qoltvp5mfD1MrhoD9Yg/kORAKaSGcwvZtUaliWYSmZwYSmHoa6dn9t3Xqlcu7KHcm2oIv5EdCMRjRHRKSK6vcrrf0hEo0T0IhE9TERbC+yVrEuhWEJ0Mol3HdkNxw5qyPvcTlzfF5amiSqMxBRRqXXmDwDDU1Kg1qLGjZVPXGSmem3ULP5E5ATwRQBvA9AP4D1E1F+x2XMAjjDGLgPwAwCfrXW/dudrvziNQonhshpmUEORICbmlrCUlQlfa4nGkugM+tDS6N1843UY6JTJXtUYjiXhdNBquYad0Bn0oanejU/9eFT6rGpAjZn/VQBOMcYmGGM5AN8FcPPaDRhjjzDGeKnDJwFs39MjeQnPnVNmPTcMbK30QDUGIwEwprTQkygs5wq4+4UpDNQwMwWAYJ0be1vq8fXHT0uBWkM0lsSBtsaa+kkTEd7aHwZjkCGfNaCG+EcAnF/zfLL8t/X4IIB7q71ARB8ioqNEdHR2dlaFoVmXaCyJf3dZR01fIm7WiMoOX6s8OBoHABzZu6vm9zrc7sfcYk6WIyjDnb21mHw4t16lhIlKs+XOUUP8qxmcq051iOh9AI4A+Fy11xljdzDGjjDGjrS1takwNGvywMgMYhdXav4ShQI+hPxeaZpYQ3QyCY/Lgd/eRubpevzRDUrXLylQCjOpDOYWcxiK7Nzkw+Ehn/La3TlqiP8kgN1rnncBeFntACK6HsAnAdzEGJMhEDXwi1NzAIBbXlm79WwoEpTitAZez8e9jXo+67GvtQENHqcUqDJ8hVlLpA/H53aiN9SIf3ryrDSr7RA1xP8ZAL1E1ENEHgC3Arh77QZE9AoAX4Ei/AkV9mlrorEkruppRmsNDknOYCSI8dlFWeUTSvOWkamUKjNTQKnzM9Apb66c4VgSDgL6O2oXfwDY01yPheU8xuLSrLYTahZ/xlgBwEcB3A/gGIA7GWMjRPRpIrqpvNnnADQC+D4RPU9Ed6/zdpJNGJlK4rlzFzHQqY5ADUWCKDFgVIYk4sz8EhazhZpCPCsZjARxbDolG7uj7OwNNaLOs3M/1Vp4GY0Z6fTdEVurpboJjLF7ANxT8bc/WfP4ejX2I7mUlFVLlM9a+BI8Gktu2KPWDkRViEGvZKgrgMzjJZyaXcThdnVu2GaEMYZoLIXXH9y44dB2CPl9AIBESlqRd4LM8DUZiVQWROpEowBAyO9Fa6NXmiagmCU8LgcOhv2qvaeMqFKIp7KYW8yquqoKBbxwEHB+YXnzjSUvQ4q/yUikM2hp8GyrwchGEBGGIgHplETZ2dvuV8XZy+lpbUS9dPquHr+a4u91OdEb8tv+3O4UKf4mY2wmjX2tWy/fvBWGIkGcSixiJWffQlmlEsNILKWqyQcAnA7CQGfA9mUeorEkiIB+lXxVnMFIENFYSkb87AAp/iaiWGIYnVZfoAa509fGmb7nLiwjrbKzlzMYCWJ0KoViyb4CNRxLYn9b45ZbNm6VoUgAc4tZJNLS7r9dpPibiPHZRWTyJQyqFIrI4U5fOy+ftXD2cgY7g1jJFzE+u6j6e5uFaCyp2Y0VkD6VnSDF30SsJsmo/CVqD/jQ2uixtdP3vpEZeJzqOns5/ObKS0fYjUQqg0Q6q8mNtb8zAAfJLOqdIMXfRERjSdR7nNtq2bgViMjWzUeyhSJ+8uI0wkHvjjp3bcb+8uf1z0+eVf29zUBUA2cvp97jwv62Rtteu7Ugxd9EDMeSqzVN1GYoEsTJxKItuyPxOPHfuEqbNhNOB+EdQx24sJyzpWOSO3vVSkysRJYo2RlS/E1CsVx6QIulM6DUn+cOZbuRSCsZon0d6pt8OJfvDiKTL2HRhr0ThmNJpc6RV11nL2cwEkQinUUiJTN9t4MUf5MwMbuIlXxRk6UzYG+n79RFRTTCAZ9m++DvHbu4otk+REUrZy9nbZa6ZOtI8TcJq3ZTFSoiVqMz6ENzg8eWURMjUym4nYR9bQ2a7YOXdrBbDaVEOoN4ShtnL6e/IwCSTt9tI8XfJERjSdS5navOQ7XhTl87foGGY0kcavfD61Kn4Fg19rc1wOd22O78qtEPeTMavNzpa68ba61I8TcJI7EU+ju1cfZyhiIB2zl9lYJj2polAMDldKCvI7AqhnaB3+xqbYu5GYOdAYxO2evGWitS/E2AUmc+iUGNoiU4QxHF6WuntoOTCytIruRXG65ryVAkiJGpJEo2yvSNlp29jRo5ezldu+oRT2dtnUW9XaT4m4CJuSUs5Yqa2k2BNdmSNjJNaBmDXsnBsB9LuSLiaftEpajVs3czQgEviiWG+SVZ5mGrSPE3ASNT2pUeWEukqQ5N9W4M28jpOzqVgtNBONSuXZgnpz1gr/rzc4tZTCczutxYeW1/2dhl60jxNwHT5Qt6T3O9pvtRyjsH8b2j521j959KrqA94IPPrZ2zlxMKKG037VKETMt6SZUcDCuBEMen7WOyrBUp/iYgnsqg0evSLElmLa/YozSJefTErOb7EoFEKrsqyloTaaoDAJydX9Jlf0bDV5ADKhcirEZ3i+JXsJPJslak+JuAeCqDkF8fgfrIG/bD6SCM2ORLNKPjuW1p9KIj6LONQI1MpdDdUo+Az635vhzlvgl2ObdqIMXfBByfTmN/SJv4/krqPE6E/V7ELlrfdprJF3F6bgm9Ie3t/Rw75VLELq5gb4t2iXOVDEWCODadQqFY0m2fZkaKv+CkM3lMzC3p4jTjtAV8q/VurMyxaaXBih42ac5QJIjTc0tIZ/K67dMoEukMwjqZ1AAl+z1bKOFkwr59E7aDFH/BGZnSPkOykrDfi7gNimQNa1wyoxpDkSAYs36Zh0KxhLnF3GoUjh7wm7gd61PtBCn+gjOsY8QEZ19bI07PLSFbsHbETzSWRHODB51B/QRqb4sSsTWVtHaBt1OziyiWGPaH9DP78Gg4OxbP2wlS/AVnOJZEe8CHNp2ckoAyO80XGU7MWHv5fCK+iMPtfhBpVzKjklA51j9u8Vj/YR1q+lTidjrQ0uCx/LlVCyn+gjOsYQ3/9RiySaZvIpVBR7BO1302el1o8Dgtb1YbLned62nVJ1CBEwr4ZF3/LSLFX2AYYzh3YVnTUsPV2N1ch2Cd29LiXyoxJNL6xfivpaetASfj1l5VRTXsOrcR+1obcCIhE722ghR/gUmtFJArlHSLQ+cQEfo6/Bibsa5TMpHOolBi6NDR3s/hbQet3NJxbCaNfo0LEVZjMBLE+QsruLic033fZkOKv8DwAmAhDTtMrUdnsM7StlPuSO/vMEagkit5nL9gTcfkYraAxWwBnU36mtSASyZLWdt/c6T4Cww3DXS3aFvTpxqhgA+z6axlZ6fRWBIOgiGzU6v7VLjNXe8VKwAMlktJWPXcqokq4k9ENxLRGBGdIqLbq7z+eiL6FREViOgWNfZpB6KxJNxOfSpOVtIe8CJXLGHWokXIjs+k0N3agHqP9vWSKjnU7oeDYFmzGu+J3G7AirWp3oPdzXUy1n8L1Cz+ROQE8EUAbwPQD+A9RNRfsdk5AB8A8O1a92cnhmNJHAxr215wPQ6XzSEjFk1GmkllVwut6Y3X5USb34sZi0alDJdLkPcZYFIDLvlUJBujxsz/KgCnGGMTjLEcgO8CuHntBoyxM4yxFwHIohtbRK/2gusx0Gnt5fNsKqNr9mklIb/PsqWdo7EkIk112NXgMWT/g5Egzl1YRnLZ+iU0akEN8Y8AOL/m+WT5b5Ia4O0F9Y7x5/h9bvS0NuDYtPVm/rlCCYl0Fu1B/W3SnHDAhymLZqIOGzhpAbDakvOYRc1qaqGG+FcL5N2Rl5CIPkRER4no6OysPerJr8ewju0F1yPSVGdJ08SJeBqFEsPhdmPMEgDQ1+HH+OyS5ZrmJFfyODu/rGu9pEq4Oc/qiXS1oob4TwLYveZ5F4CpnbwRY+wOxtgRxtiRtrY2FYZmXibmlIYfvWF9MyTXEvJ7LdlyUK+2mBsx0BlEscQwarGVFW9Us7/NwOu2nLgnxX9j1BD/ZwD0ElEPEXkA3ArgbhXe19bMprPw+1yGRKNwQuXSzlarjx6NJeH3urBX47aYG8FDEq1W3ZNPFtoNSJ7j+L0u1Hucq1FHkurULP6MsQKAjwK4H8AxAHcyxkaI6NNEdBMAENGriGgSwLsAfIWIRmrdr9VJpPXrMLUeh9v9yBcZTs1aqxRBNJbCQCQAh86lB9bSEayDg6zXcJw7sY28dokIB8N+S/qr1ESVaSVj7B4A91T87U/WPH4GijlIskUmZpfQtcu4mSlwySwSnUwaah9Xm4nZRbzzFcbGJDgdhDa/13JNc07PLcLjcuhahbYah8J+/HQsYegYREdm+ApIrtyNaFCHxtcbsa+1AfUep6Vi/VdyRaQzBUNKZlQSDvgwbbGZfzSWRF+7H26nsdISDngxv5i1nMlSTaT4C0ginUGxxFabUxiFw0Ho2lWHaQs1HuEz7bAA4t8b8uPYdNoyJTRKJYaRmP4lyKsRCvhQYsD8kizwth5S/AXkkt3UeIGyWjLSmfllADAsu3ctQ5EA5hazlimgd/bCMtLZgqHhyZzILuXzPVOOmpO8HCn+AsKdgEbbTQElbM5KTkmePzFgsEkNuNQ72CpZ1CKE0HIGO611brVAir+AHJ9OwUHGxkpzDoQaMZ3MWKY+enQyie6WegR8bqOHgv6OIBxkHYHiGct7DKhCW0mb34v2gE8WeNsAKf4CEo0lcSDUiDqP/gXdKrFaffThqaQQM1MAqPM4cSDUaBmBiqey8Lkd8HuNy01Zy6F2P04mrBWmrCZS/AVkxIC+veuxKv5T5heo5HIekwsrwpxbQDFPWEf8lWJ5RMblT6ylI2gtf5XaSPEXjGyhiEQ6i+4Wffv2rkdTvQfBOjdiC+aP+Dm/oDh7jWiOsx57WxqQSGeRK5g/JHFsJo0DIeNNlZyQ34s5Ge65LlL8BYM3Twkb0Fh8PcIBayQj8XMrQow/h3/Os4vmnqEu5woYn10UalXV2VQHxiDLPKyDFH/B4GF/IoR5ckJ+nyXCEeMGthdcD6sUIRudSqHEjK1CWwlv0WkFk6UWSPEXjBPxNACgp1UMsw+gjOVUYhGlkrmTkcbiadS5negIGh/jz9nXqphJTsykDR5JbUQFKEFeCf8OTZbNfZKXIsVfMMZm0mjwOLFXILv0UFcQi9kCTs+bO2HmRDyNg+1+OA0s6FbJ3pZ6NHicOG5y8T8RT2NXvVsoc2Wj14U6t9OSZcnVQIq/YMRTGXQ01QkTMQGsDfc09/J5JplBpEkccxqgVKBsD/pM71OZSWbQKdh1S0QIB6zbK7lWpPgLRiKdFcomDVxaPp+/YO7ls3JuxRJ/oFxCw+SzUxGvWwDoLpssJS9Hir9gxBZW0C5QNAoA+NxOBOvcpnb6pjJ5pDMFIQq6VdIR9GHSxKG0jDHELq4Y2sBlPfo7AjiZWJThnlWQ4i8Q84tZzKQy6Oswvu5MJeGA19QRKdxkxSNARKKvI4CZVAbzJg33jF1cwcXlPPoFvG47m+pQLDFZ3bMKUvwFglecFClRhrOnucHUHb1GyuUpBgUUf15kzqw1fnjpjwGBIn043BRl5omLVkjxF4jZstMvJFDEBGcoEsTpuSUsZgtGD2VHHJtOoT3gQ0ujeOeWJ0YdmzZnxM9wLAmng4Sc+XNTFC86J7mEFH+BEKmOfyVDXQEwZt6G49PJzGqNd9EI+Nzwe12mnZ1GY0n0hhrhcxtfiLCS3pAfDjLvdaslUvwFYjyxiHqPEy0NHqOH8jJW+/ma1DSRSGeEikGvJGTiEhpn5peENFUCSuXU3pDftNetlkjxF4hoLImBzgAcAiUhcUJ+H0J+rylnUIwxzCQzQq6oOO1Bnylr0DDGkEhlhYyi4gxEAhidNt91qzVS/AWhUCxhdDqFoUiT0UNZl65ddZhJmc92enZ+GUu5Ig63+40eyrocDPsxNpM2XUhiOlvASr4o9Kqqa1c9EmlZ3bMSKf6CMJPKIJMv4WBYzOUzYN5kpNPlPq69YXHFfygSxEq+iPFZc5XQOF0eb9cuccqRVBLye8FkM/eXIcVfEHgCVVjARBlOuNzPlzFzFXjjjlQRk5A43KcyOm0u2zQ3p/CeuSLCTVIy4uelSPEXhNUwTwFT5Dm9YT/S2YLpslF5FFWbgGGenN3lmfN00lx2/+mLKyACOgWrmbSWQ+UVn1lDabVCir8gnJ5TErwiTWKGIwJYtZmbLdnrzNwSQn4vPC5xL/c6jxN+r8t0ZrV4KouWBi9cTnHP7e7mOtS5nRg32XWrNeJ+YjZjdDqFrl11aKoXL8yTw5fPsyYTqNFpcXoib0Qo4MV00lyrqpmU2CG0wKXqnrKf70uR4i8IsYVl7GkW12kGAG0mTZWPLawIf24BJSHJbHX9j8+k0CtojP9alG505rputcaS4l8qMdM1xE6kxY6VBpTqnq2NHpw1UWnnlVwR6WxByJIZlQx1BXF2fhnJlbzRQ9kSiXQG8VTWFKuqyK46nJs3z3WrB6qIPxHdSERjRHSKiG6v8rqXiL5Xfv0pIupWY7/ViF1cwWWfegA/ej6m1S5Up1RiwtZDr2SgM2iqpi4zq317xb6xApcifkZM0nN2pJzwJ1LrxvUY6FQqp86ZtHKqFtQs/kTkBPBFAG8D0A/gPUTUX7HZBwEsMMYOAPhrAH9V637XoyPgA2PMVAJ1en4JuUIJ+9vEXz4PRYI4mVhEJl80eihbYmxGEShRyw+spbvcutMsmb486qtboH7T62H28iRaoMbM/yoApxhjE4yxHIDvAri5YpubAXyz/PgHAK4jjfq9ORyEgc6gqT5kfqMyw/K5ryOAYolhwiTJSNFYEi4HCZ3dy+GrE7PU+JlNZUAEIWtRVcJ7ZJyMm8unoiVqiH8EwPk1zyfLf6u6DWOsACAJoEWFfVdlMBLE6HTKNOncw7EkPC4HegXO7uXwRKm4SQRqOJZCb9gvZMXJSuo8Tvh9LsRNEus/k8oIH+bJCfhcqPc4Td2NTm3U+NSqzeArU0C3sg2I6ENEdJSIjs7Ozu54QENdAWTyJdOkyk+Wo1HcJvgScb+EWcI9JxeW0dMqfqQPZ19bI8ZMMjsdiy9if5v4Jh9ACfcM+WW451rUUJtJALvXPO8CMLXeNkTkAhAEcKHyjRhjdzDGjjDGjrS1te14QP0divnELF+ieCpjCmcvoMSiOwg4v2COyIlESsym7esxFAlgJJZCqSR2CQ3GGE7MpIVsOboeHcE6nDdRpJrWqCH+zwDoJaIeIvIAuBXA3RXb3A3gtvLjWwD8lGlYIIabJhImieuNp8wR6QMAXpcTB0KNq5EeIrOcKyCdLazmJ5iBoUgQ6WxB+HBaXs1T5LIOlfR3BnB8xjzmYK2pWfzLNvyPArgfwDEAdzLGRojo00R0U3mzrwFoIaJTAP4QwMvCQdUk4HPB63KYIqljMVvAVHIFPa3i2/s5+1obcU5wcQKAk3ElnX+fCaJROPw6EH2GmjBRCC1nKBI0lTlYa1xqvAlj7B4A91T87U/WPM4AeJca+9oKRISOoA8xE1TxG51KgTHFT2EWQgEvfjk+Z/QwNuV4OcyzX8Cm7evBSyWIbpvmYZ4iV0qthF8Hx2dSOGSC6C+tEd/DuEP6OgKmME1ETRTmyQkHfEhlCljJiR3rP5NUBLQjKG6xvEr4TFr0VSv/bvW1m+fG2lG+Uc2YJJpKaywr/oMRc6TKn5tfgt/nMtXyeW85GUn0KomJdAbNDR6hq3lWUudxIhzwYjwh9rkdjiWxp7kewXq30UPZMo1eJdxT9FXVyFRyddWqJeb5VmyTAb7EE7x3pxlq+lTCG3eInkg3dXHFdOcWUM7vi4Kf2+Mz6dXvmFkgIrQHfMI3dfnMvcfx3++Kar4fy4p/1y5lqT8j+PI5boKSuJXsbamH3+cSXvxHplLoM6FtdzASxPjsIpayBaOHUhXGGKaTK0L3nliPQ+1+4c3BiVQWYR0i1Cwr/m1lM8qswEs8xhjGZ5dWuziZBSLCgVAjzs6LGzWRSGWQSJuj4mQlveFGMAZhO6alswVk8iVTVEqtZKgriHMXlpFcFtccnEhndDm3lhX/gM+FOrdT6Iif6WQGyZU8BkwoUGG/T+hUed5b1mymCUB8py83m5jVpAYAx3Swqe+E5VwBC8t5hHXwAVpW/IkIh9r9GBV4icf7tXITlZkIB7zCihNwKaKjywRNXCrhZkBRzy//Th02UaQPJ8LNwYJG/BwrT1oO65A5bVnxB5SkjtEpcVPlLyXKmG/5vLu5HulMQdj66HxVInLT9vVoD/rgchBOz4lpVjsztwQiYJ9J6vqsJSR4N7rhmH49Eiwt/oORANLZgrB1aPjM34zLZ54wI+rKaia1YrowT47X5cTBsF9Yh3oinUUgqBYZAAAgAElEQVRro9cUhQgr4eGe04LO/EenUmht9OgSBGK+T28bdO0SuznGsekUmhs8pqiHXgl3UovacHx0Oo2DJiiRvR6DkQCGY0loWAJrx5ipEGElRISDYf+qeUU0ppIriOyqh0btTl6CpcX/Uqq8mOIfjSUxGAnq8kGrDS+WlhDQ6ZsvlnBsOmWK9oLrcag9gIXlPBYEjEo5M79sSj8VZygSxIig5mC9wjwBi4t/KCBuOne2UMTJxCIGTRiNAijN3Jvq3ZgW0HY6PruIXKFkyjBPjqgTl6VsAafnljDQad5zOxQJYjFbEK44IWMMMyl9wjwBi4t/wOdGOODF8Rnx6vonUlkUS2y1VIIZ6Q01CplBzUMR95gw0ofD/UCiray4rdzM1+3uZm4OFstkyUO/D4b1SUy0tPgDyl1eRMcZry8SMqGzlyNqu0wumGY+tzx7VrS6/jxCzUw9EioJCVo59VS5ntMhKf7qwFPlRatAGTdxmCeH10efECwkkZf0MGOYJ6cj6MOuejeGJ8WauMyYsI5/JXxVJVrED9cEvarQWl7897bUgzHxolKOT6fgIKUxilnhS3/RsqiPT6fR3VJvyjBPDhFhUMBV6/GZNDxOh6lNao1eF8IBL8YEy/K9ZA2QNn9VuJQqL9YSLxpL4kCoEXUep9FD2TH83IrWLpNHUZmd/o4ATiUWhQr3jE4mcbjDb+obKyCmOfj8hWU0N3jgc+ujCeb+BLeAqKnyw1Op1TojZoXPUHjTFBG4uJxD7OKKJcQ/HPAhVyzhoiDhnowxjEwlTR3pwxmMBDExtyRU5dThqST6dSjrwLG8+O9urofLQTgRFyfiJ5MvYjadRY+JestWw+tyomtXHU4kxDm3vBJmd4u5zy1w6eYaFyTcM50tIJUpoKfVvCYfTk9rg3Dm4MmFFXTreG4tL/4ipsrzMtNmLOtQSV9HAGMChdLyuHiz9UioBnf8TV4QQ6C4ec8K1+0lk6UYq9ZsoYiLOlXz5Fhe/AHFvjcskPhzgWqzgEB1Bn1CmdTiFgjz5Bxu94NIMQeIwGqxPBNHqHFWTZaCXLuXwpP1O7e2EP99bQ1YWM5jURD73om4Es/bYwnThA/pTAGZvBihtCfiadS5nWi3gPg3eF3Y39YozMSFm07NHKHG6dpVB7eTcFKQXskny6bTHh3PrS3EfzWpQ5C7fDSWhN/nMnWWJKcjqIjspCCVU4djSfR3BuB0mK9eUjX6OwI4Ni2GWS0aS6K10WsJkxo3B4tyY41OpkCkb/MhW4g/t6OJssQbiSUx2GnOgm6V8IYeIvRFLZYYRqbMXdCtks6mOsyms0KEe47EUhiKBCxx3QKXwj1FOLfDU0nsa21Ag9el2z5tIf57y1E144Is8c5eWMb+kPlNPoDSb9bjciAqQCbq6blFLOeKlgjz5IT8XiHCPRljOHdhGfvbzG/y4exva8TF5TzSApiDz83rf25tIf6dQR+aGzxCRPxk8vp79bXE7XTgcLtfiOJ53Dxixr6968HNakZnUaezBazki5aI9OGIZA6OpzO6n1tbiP+lVHnjTRNWCvPkdAbrhDCp8aijzibz1pqvhPdyHTE44me15agF7P0cUbL/eZin3nW+bCH+AHCgrRFn540vQHZqVjE97TZxbZRKRGnmHk9l4HU5EPDpZzfVmr3N9fB7XYavWnnFSTPX9KlkTzngYnzWWHPweELRpT06B4DYRvzDAS+Wc0XDwz15+7iBiHVME+GgEu6Zzhhrl55KZtAe9FnGIQkADgehr9P4iJ9oLAmng9CnY/kBrVk1Bxvsr+J5HHr7qmoSfyJqJqIHiehk+feudba7j4guEtGPa9lfLYQEqfEzk8wg4HMh4HMbOg41Odyu1B83WqCOTaVWx2IluprqDO9GNxxLoTfUqFvRMT3g5uBhgyPVhmNJNHpduuf91Drzvx3Aw4yxXgAPl59X43MAfrPGfdUEX66enjXW9JNIZS1l7wewWqDOSNNEOpPHxNyS6YvlVSMU8Bka7skYw7BFKqVWMhQJ4GQ8bWiS4um5JewPNcKhc25KreJ/M4Bvlh9/E8C/r7YRY+xhAIZOC/s6AnCQsQIFANMp/b36WhMK+NDm92LUwBkUzzMY7LKeQIUDSrjn3GLOkP3PprOYX8qZtt/0Rgx2BlEoMZyMG2f3j6cyujVtX0ut4h9mjE0DQPl3qPYhaUO9x/hU+UKxhLGZFHrD1omV5uzeVWdohUT+uVopwYvD2/odM6hf8lTZ5GSlIAXOaj9fA6/dRNoYa8Cm4k9EDxHRcJWfm9UeDBF9iIiOEtHR2dlZtd/e8AYO47NLyORLlhSokN9naE/U8dkltDR40Gri1o3rMRAx1qwWt0DrxvXg4ZVGXbsLSzlcXM4jskv/8ORNxZ8xdj1jbLDKz48AxImoAwDKvxO1DIYxdgdj7Ahj7EhbW1stb1WVwUgQiXTWsKSO0WljvPp6EA54MZPMGGaXTljQnMYJ1rmxt6XesFUrdzZboaZPJS2NXjgdhGmDkuhWI30M8FXVava5G8Bt5ce3AfhRje+nKUNdxs6gpi4qXyIrxUpzesN+LGYLq81U9CaRzloqAakSI/v5HptOIVjntkQp50qcDsK+1gbDMtSjBporaxX/zwB4CxGdBPCW8nMQ0REi+nu+ERH9HMD3AVxHRJNEdEON+90Rh8phgKcMqvETTylhnlYKl+MMGWiaYIzh7PwSIhbK7K3kcNiPyYUVQ6JSorEkhiLWKERYDSPNweOJJXQEfQjW6x/6XZP4M8bmGWPXMcZ6y78vlP9+lDH2O2u2u5Yx1sYYq2OMdTHG7q914Dsh4HOj3uM0zL43k8xYoslINQ61++FykCFfonMXlpHKFCxpTuOEyzV+ZnW+drOFIk7E05Y+t4ORIGbTWUNygBIG1PTh2CbDlxPyG1eK4PhMGr0h60X6AIDPbVx99OFyzSYrOtI53DGp97U7NpNGvsgsfW5XzcEGZPrGUxnda/pwbCf+kV11OH9B/8YjyeU8zl1YtvQM6nCH35B46WgsCbeTLBlCy+kqR4Oc0/na5SbSQxbMnObwkhV6d/UqlhgmF1YMK0RoO/Ef6Azi2Ewa+WJJ1/2OGFS/Q0/aAz7MLmZRLOkb8TMylcShdj+8Luv5UjjdLQ3wuR2rqxy94BUveWlpK9LodaHR69J9VcX7TxhVgtyG4h9ArlDSfYZqpFdfL8IBH4olhgtL+maiTi6soNsC/ZA3wuV0oL8joLtZLZHOoNHr0rXDlBGEAl7d/Smr5kqDstJtJ/5cfPX+Eo3F0wgHvGhu8Oi6Xz3hs8PzOvfzTaQylkxAqqSvI4CxuL4hiecvrFh61s/pDNbpft1GY0n43A4cMKg7mu3Ev7ulAY0G1EdPpLLoCFo3FBEA+svL1xEdz206k8dSrmjpGH9OZ1Mdkit5XcM9R6aSq5+rlenrULrR6WkOjsaS6OsIwOU0RoZtJ/4OB2GgM6C/+KeN8+rrRaSpDrvq3bqe2xNl892+VmubfQCsJlnpZZ6YW8xiOpmxtKmSMxgJIlco4YROK6tSiWF0KmXoubWd+AOK6efYdAoFne7ypRJDbMH6y2ciQn9nAGM6ZkuuFnSzYDXPSjrLK0e9zBP8Jm7lIAWO3ubg0/NLWMwWDC1Bbk/x7woiWyjpFtp1Zn4JS7miLZbPHcE6XXuiRmNJtDZ60G7R5Lm19HUo4ZYjOkX8DJfj3o2KRtETvc3BwwLcWG0p/oM6lyKw0wwq5PfqGu7Jm4xYtfTAWloavegM+nS7bl+MJbGvtQF+C3WdW49L5mB9bqzRySQ8LoehuSm2FP+e8l1eryXecEz5oA+GrZsow+kIKuGeesRMZ/JFnEws2sImzRmMBHW7bsdm0uizwayfw83Bejh9j8+kcbjdD7dBzl7ApuLvcCi2af2WeCn0GfxB6wXPlhzRoavX6HQKxRKzxYqKMxgJYmJuCelMXtP9MMYwk8pYulheJUNditNXj8KPM6nMqg/HKKyvRuugl9OXMYbhqeRqQw6r09cRAJE+jrMRGyTOVcJrQ52/oG3p7NRKAblCyfIRamvR0xys9J8w9tzaVvwHIwFk8iWMa9zQ/ez8MtKZgm0EqsGrX7vMaCyJ5gaP5aOo1sLzGeJpbc1qvK2hVRvkVEMvc/BitoBUpmB4hV/bir9e9eftUNahEr3qo0djKds4ezk8k3lW44gqbrbjEUZ2QC9z8Gj53B42uFiebcW/p7UR9R6n5nf54VgSHqc9nL2c3nAjEukslrIFzfaRyRdxMp7GUMQ+DkkAaA/64HE6MD6nrV16OJZEvceJnlbrVkqthh7mYFEmhLYVf6dOmb7RmFJx0uOyz6kOl2enWjbNOT6TRqFk7Trz1XA7HTjUrn3fhGgsiYHOAJwO+6yqAEWQM/kSTs1qd3MdjiUR8nul2cdIBiNBjE6lNItJZ4ytxqHbCW6XTmgY7mmn3IlKlHDPFBjT5rotlksP2PXcAto2duFtMY3G1uI/FAliJV/EuEZ3ed5eUIQPWk9271Ia1J+e086ZPjyZxK56t61CETlDkSCSK3nNIn7GZxexki/a7roFlBpRDRqag5eyBYzPLgpxY7W9+APa3eVFse3pzZ7mevg1TpWP2iiztxKtgxX498Fu1y2gvdN3dDoFxsQ4t7YW/31titNXsy9Rub3gwXZ7Oc0cDsJARLvGI5m80lRchC+QERxsb4TbSZpet/UeJ/YZVGfeaAYjwdUEQrVZvbEKUIjQ1uLvdJCm3ZHGE0voaW2wdHvB9RiKaNcuc8ymzl6O1+XEoXb/amtQtRmOJdHfYT9nL4c7fbUwBw9PJdHm9wqRP2Fr8Qe0vcsn0hkhPmQj4PXRtWiXOWyDfsibMdip5FKo7fQtlhhGbOrs5WhpDh4WxNkLSPHHUCSI5VwRpzWIm06ksrYWf0CbMg/DsSSCdW507bKfs5czGAni4nIekwvqOn0nys5eO4u/Vubg5VwBpxKLGBSkWJ7txV+reh4ruSIS6Qw6bRiNAlxKldfCLs1D5ezo7OVo1XzErkEKa3E6CL1hP04m1G1KdGw6hRITZ8Vqe/Hf39YAn9uB6KS6VShHyx+0HRphVEOrqIlsoYixmbQwXyCjONTuBxHw5z85pur78qbi+9us3xZzIzoCPiRULqEhkrMXkOIPl9OhidN3WM6gNEmVPzGziHzRvs5ejs/txNU9zYhdXMFyTr0yGtzZa1RTcVEIBbyqZ6hHYymhus7Z+xMuMxQJYmQqiZKKTt9oLIkWm1WcrGQoon67TGmWuMQHX7cPgGJOUAPu7JXnVmlHmlzJI7miXt8E0brOSfGHYoNbyhUxoWJGqmgftBFo4U+Jlp29u5vt6UtZi9pRKafnFrGcs7ezl8P7bY+odO2u5Io4mRArN0WKPy7Z4NQy/dixvWA1tEiVV26qAVvfVDnhgBetjV7V+s6urqoEsUkbidpZ1KOCOXuBGsWfiJqJ6EEiOln+vavKNlcQ0RNENEJELxLRu2vZpxYcaGtUnL4qftB2ay9YDaUptnq1/XOFknT2roGIMBQJqJbsNRxLwed24IBNM3vX0tzgQaSpTrVrV0QfYK0z/9sBPMwY6wXwcPl5JcsA3s8YGwBwI4C/IaKmGverKi6nA30d6kWmjMgZ1CqDKjp9T8TTyBVLQn2BjGYoEsTJxCIy+WJN77OcK+BrvziNPunsXWVQxRIlwwL6AGv9lG8G8M3y428C+PeVGzDGTjDGTpYfTwFIAGircb+qM1Qu76yG05e3F+wU6IM2iqEupV3m0bMLNb8X/yIOdkrx5wxEgkoJ5hqdvs+fuwgAuPZAqxrDsgRDkSDOzC9jJll7aXIRCxHWKv5hxtg0AJR/hzbamIiuAuABML7O6x8ioqNEdHR2drbGoW2PwUgQi9kCzszX7vSNxlIY6JR2aQB4xW7FEviVR6t+5NsiGkvC73Nhb0t9ze9lFdRK9uKr3g+8tqfmMVmFK/cq1+7f/exUTe/DfYCDgnWd21T8ieghIhqu8nPzdnZERB0AvgXgtxhjVW0AjLE7GGNHGGNH2tr0XRzw2eTf/aw2kbrUXlDOTgGgu7UBV3U344QKNX6GY0kMdoo1ezKajqAPLQ2emiN+orEkIk11aG7wqDQy8/PqfS2INNXh2Extmb7Hyj5A0TRhU/FnjF3PGBus8vMjAPGyqHNxT1R7DyIKAPgJgP/JGHtSzQNQi0PtfridVLN54uiZBVtXnKzGm/tCiF1cwcJSbsfvkS+WcGwmLf0oFRARBiO1O9V5FJXkEkSENx8O4enTF5Ar7Nxn9chxRRZFC1So1exzN4Dbyo9vA/Cjyg2IyAPgXwH8I2Ps+zXuTzOcDsLHr+vF6bklpDI7T+z425+eBABcvlson7ahqBE2dyKeRq5QEu4LJAK1On1TmTzOzC/LCUsVXrFH+R5//fHTO/p/xhju+PkE6j1O4brO1Sr+nwHwFiI6CeAt5ecgoiNE9Pflbf4jgNcD+AARPV/+uaLG/WrCQPni/9YTZ3f0/4wxjCcWcVVPs20LulWDm9S++MjObacihsqJwmDZ6bvTTF9+vcsb68u56fJOADufuEwlM8jkS3jfNXuFM1fWJP6MsXnG2HWMsd7y7wvlvx9ljP1O+fE/McbcjLEr1vw8r8bg1eZV3c0AgEdP7MzZPLmwgvmlHN4x1KHmsExPsNxr97nzF3cc8hmNJeH3urC3WTp7K6k1SfHRMeV6P1K+/iWXcDkduGEgjMdPze2od8JTE/MAgBsH29UeWs3IgN41NHpd+M1r9u445POz948BkCafanzihoPIFUo4tcPuSNFYCgORABw27S61EZ1BH5obPDuanZZKDCNTSbz/1XvR6HVpMDrzM9gZxMJyHvcNz2z7fz//wAkAQH+HeP4UKf4VDJVDPu/d5ge9nCvg316YQmfQh8ulU/Jl1FKH5tz8Ml44f1GafNaBO33vPDq57QqfE3NLWJL1fDbkttd2AwD+5qGT2/q/k/E0YhdXcMNAGD63eK1cpfhX8LpeJcnlvpHtif9Pyx799wpo2xOBnlalO9LRM9uPpvrR8zEAwJsPh9UelmW4ukcx2TxyfHsmS14aQt5Y1yfgc2MwEsBYPI3k8taDQX5Yvm4//Ib9Wg2tJqT4V9DZVIcbBsLbtp/+RbmpxgdfJ5NkquF0EA63+/G9o+e39QUCFHv/vrYGvHp/i0ajMz/8uvvzn4xu6/+ik0l4XQ70hmQ9n424/cY+AMD/eWBsy/8TjaXQ1xHAlXteVvJMCKT4V2GwM4jTc0tbLpg1PruI6WQGbzrUJuTyThTeeWUXAOCFyYtb/p/kSh4PjMZlSYdN8LmdeNOhNkwnM5jYol+lUCzh6788g8Oyns+mvGZ/C3xuB47PbC2iamEph8dOzArTr7ca8hOvwhsPKVUq7no2tqXtv390EgDwX950QLMxWYFfu2z7YXP3RqcBANfsk7P+zfjom5Xr787y9bgZT5+5gGKJSR/VFnA4CO8+shvRWBLFLQSDcJMPNyOLiBT/Kgx1BXHF7iYMb2Hmv5Ir4suPjuNwu1+Gym1CsN6NPc312zKp/endI6j3OHHrq3ZrODJr8Mq9zTjc7seXHx3HSm7zhC/+OXz8ul6th2YJhrqakMmX8I1fntlwO8YYPvVvo9hV717NExARKf7rMBQJ4unTFzC/uHEfT36Hf9ugjO3fCkORIO4dnsFSdvOolOfOLSBbKOG6vrAM8dwi/Dr8m4dObLgdYwzfePwMOoM+tDR69Ria6eH5O199bGLDmP8nxpXY/rf0h4UO/pDivw6vLZe2/f6zGy+hf/ziFADgfdfs0XxMVuBIt+L8uqdsztkIbr74iKDREiLCr8OvPDaxYdjnxNwSppIZ7JeO3i1T53HizYdDmEllNuxL/YOyZoga5cOR4r8ONw62ozPow2fuPb6uje9kPI3HT83j3Ud2y9nTFnn/q7vhczvw6X/bOCrl4nIO33n6HK7Z17zaT1WyOS2NXvz9+48AWL+cRrHE8I6//TkA4I/f3qfb2KzA7W87DAD47H3H191meCqJNx1qw37BO6JJ8d+ANx1WHL+PnaweO/3lRycAAO+8MqLbmMyO00G4trcN6WwBD43G193uc+VsaWlO2z7XHlRWrV9+dAJzFWbLYonhs/cdRyZfwtU9io9AsnV6Q41obfTioWMJnK3S++Pp0xdwIm6O/t1S/Dfgw69Xlm13PnP+Za8xxnD/yAxcDsLVMhJlW3ysHJXyyR9Gq74eT2Xwz0+dAwDc8sou3cZlFbwuJz7yxv0olhi++tjES157YnweXyn/7XO3XC60TVpEiAj/9a0HAQCfuffls///8S8vAgBevV/cKB+OLOaxAXta6nF9XwgPjsZx1V88BECx+/3jb1+FLzx8EovZAj5984DBozQfl3U14Q+uP4i/fugEXvdXP8WX3nslLuu6VA/pCw8rafT//DtXo0HWm9kR/+2GQ3hwNI6vPDaBj1/fi3qPC5+97zi+9aRSwfOpP74O4YBsM7oT3nPVHjw4Gn+JLnAS6Sx+99oeUyQkym/WJnzszb1o8/sAMOQKDHf9ahJ/97NxPDgSh9flWI1dl2yP91y1G/NLWXzrybO4/a4ovvnbV6HN70WxxPCDZyfhdtJqyQLJ9iEivGOoA194+CS+8ugE9jTX486jkwgHfPj96/dI4a+RP7j+YPkcvtQf6HI4cNtrug0Z03aR4r8Jl+9uWq3SyRjDkxPz+G7ZDPSFW6/ALtn2bkeEAj58+uZBvDCZxAvnL+LzD4zhM//hMvxsLIFcoYTfvbZHZp3WyG2v6caXHx1fXUkBwB++5SB+42oZmVYrQ11B/GXXkNHDqAnaSY1qPThy5Ag7evSo0cN4GYvZAi4s5uByEjqCPmkzrZGVXBG//qXHcXZ+GV276rCwnMfcYhYjn7pBmnxUYGEph3RGCfl0Ogmd8pq1PET0LGPsyGbbyW/XNmn0umTdcxWp8zjxyXf04TtPn1v922AkKIVfJXY1eOTqVFIV+Q2TGM61vW24trfN6GFIJLZCGlUlEonEhkjxl0gkEhsixV8ikUhsiBR/iUQisSFS/CUSicSGSPGXSCQSGyLFXyKRSGyIFH+JRCKxIcKWdyCiWQBna3iLVgBzKg3HLNjtmO12vIA8ZrtQyzHvZYxtmjUprPjXChEd3Up9Cytht2O22/EC8pjtgh7HLM0+EolEYkOk+EskEokNsbL432H0AAzAbsdst+MF5DHbBc2P2bI2f4lEIpGsj5Vn/hKJRCJZB1OLPxHdSERjRHSKiG6v8rqXiL5Xfv0pIurWf5TqsoVj/kMiGiWiF4noYSLaa8Q41WSzY16z3S1ExIjI9JEhWzlmIvqP5c96hIi+rfcY1WYL1/YeInqEiJ4rX99vN2KcakFE/0BECSIaXud1IqK/LZ+PF4noSlUHwBgz5Q8AJ4BxAPsAeAC8AKC/Ypv/DODL5ce3Avie0ePW4ZjfBKC+/Pgjdjjm8nZ+AI8BeBLAEaPHrcPn3AvgOQC7ys9DRo9bh2O+A8BHyo/7AZwxetw1HvPrAVwJYHid198O4F4ABOAaAE+puX8zz/yvAnCKMTbBGMsB+C6Amyu2uRnAN8uPfwDgOjJ3A9NNj5kx9ghjbLn89EkAXTqPUW228jkDwP8H4LMAMnoOTiO2csy/C+CLjLEFAGCMJXQeo9ps5ZgZgED5cRDAlI7jUx3G2GMALmywyc0A/pEpPAmgiYg61Nq/mcU/AuD8mueT5b9V3YYxVgCQBNCiy+i0YSvHvJYPQpk5mJlNj5mIXgFgN2Psx3oOTEO28jkfBHCQiB4noieJ6EbdRqcNWznmPwPwPiKaBHAPgI/pMzTD2O73fVuYuYdvtRl8ZejSVrYxE1s+HiJ6H4AjAN6g6Yi0Z8NjJiIHgL8G8AG9BqQDW/mcXVBMP2+Esrr7ORENMsYuajw2rdjKMb8HwDcYY58nolcD+Fb5mEvaD88QNNUvM8/8JwHsXvO8Cy9fBq5uQ0QuKEvFjZZZorOVYwYRXQ/gkwBuYoxldRqbVmx2zH4AgwB+RkRnoNhG7za503er1/aPGGN5xthpAGNQbgZmZSvH/EEAdwIAY+wJAD4oNXCsypa+7zvFzOL/DIBeIuohIg8Uh+7dFdvcDeC28uNbAPyUlT0pJmXTYy6bQL4CRfjNbgcGNjlmxliSMdbKGOtmjHVD8XPcxBg7asxwVWEr1/YPoTj3QUStUMxAE7qOUl22csznAFwHAETUB0X8Z3Udpb7cDeD95aifawAkGWPTar25ac0+jLECEX0UwP1QIgX+gTE2QkSfBnCUMXY3gK9BWRqegjLjv9W4EdfOFo/5cwAaAXy/7Ns+xxi7ybBB18gWj9lSbPGY7wfwViIaBVAE8EeMsXnjRl0bWzzm/wrgq0T0B1DMHx8w82SOiL4DxWzXWvZj/CkANwAwxr4Mxa/xdgCnACwD+C1V92/icyeRSCSSHWJms49EIpFIdogUf4lEIrEhUvwlEonEhkjxl0gkEhsixV8ikUh0YLNCbjt4v78iouHyz7u3+/9S/CUSiUQfvgFAlTIcRPQOKEXhrgBwNYA/IqLAxv/1UqT4SyQSiQ5UK+RGRPuJ6D4iepaIfk5Eh7f4dv0AHmWMFRhjS1CqoG7rxiLFXyKRSIzjDgAfY4y9EsAnAHxpi//3AoC3EVF9OcP7TXhpKYhNMW2Gr0QikZgZImoE8BpcysYHAG/5tXcC+HSVf4sxxm5gjD1ARK8C8EsoJS6eAFDY1v5lhq9EIpHoQ7mb4I8ZY4NlG/0YY6zmGv3lTm7/xBi7Z6v/I80+EolEYgCMsRSA00T0LmC1bePlW/lfInISUUv58WUALgPwwHb2L2f+EolEogNrC7kBiEMp5PZTAH8HoANKUbfvMsaqmXsq38sH4FflpykA/4kx9vy2xiPFXyKRSOyHNENRh+wAAAA/SURBVPtIJBKJDZHiL5FIJDZEir9EIpHYECn+EolEYkOk+EskEokNkeIvkUgkNkSKv0QikdgQKf4SiURiQ/5/Bg9t309F1t8AAAAASUVORK5CYII=", "text/plain": [ "" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.plot(tek.channel[i].waveform.trace_axis(), tek.channel[i].waveform.trace())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Changing the waveform format \n", "\n", "If we wish, we can change the way in which data is retrieved from the instrument, which can enhance the precision of the data and the speed to retrieval. \n", "\n", "We do this through the 'waveform' module on the main driver (e.g. `tek.waveform`) as opposed to the 'waveform' module on a channel (e.g. `tek.channel[0].waveform`). We have this distinction because the waveform formatting parameters effect all waveform sources (e.g. channel 0 or channel 1) " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'signed_integer'" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.waveform.data_format()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The available formats\n", "tek.waveform.data_format.vals" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.waveform.is_big_endian()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.waveform.bytes_per_sample()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.waveform.bytes_per_sample.vals" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.waveform.is_binary()\n", "# Setting is_binary to false will transfer data in ascii mode." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Trigger setup \n", "\n", "The `tek.trigger` module is the 'main' trigger" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'CH1'" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.trigger.source()" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'edge'" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.trigger.type()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'fall'" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.trigger.edge_slope()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "tek.trigger.edge_slope(\"fall\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Delayed trigger \n", "\n", "You can trigger with the Main trigger system alone or combine the Main trigger with the Delayed trigger to trigger on sequential events. When using sequential triggering, the Main trigger event arms the trigger system, and the Delayed trigger event triggers the instrument when the Delayed trigger conditions are met.\n", "\n", "Main and Delayed triggers can (and typically do) have separate sources. The Delayed trigger condition is based on a time delay or a specified number of events.\n", "\n", "See page75, Using Main and Delayed triggers of the [manual](https://download.tek.com/manual/MSO70000C-DX-DPO70000C-DX-MSO-DPO7000C-MSO-DPO5000B-Oscilloscope-Quick-Start-User-Manual-071298006.pdf)\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'CH1'" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.delayed_trigger.source()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'edge'" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tek.delayed_trigger.type()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Etc... The main and delayed triggers have the same parameters. However, the accepted values of these parameters might differ. Please see the above manual for details. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Measurements\n", "\n", "The scope also has a measurement module" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "tek.measurement[0].source1(\"CH1\")\n", "tek.measurement[0].source2(\"CH2\")\n", "tek.measurement[1].source1(\"CH2\")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Frequency of signal at channel CH1: 9.96E+09 Hz\n" ] } ], "source": [ "channel = tek.measurement[0].source1()\n", "value = tek.measurement[0].frequency()\n", "unit = tek.measurement[0].frequency.unit\n", "\n", "print(f\"Frequency of signal at channel {channel}: {value:.2E} {unit}\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Frequency of signal at channel CH2: 9.98E+09 Hz\n" ] } ], "source": [ "channel = tek.measurement[1].source1()\n", "value = tek.measurement[1].frequency()\n", "unit = tek.measurement[1].frequency.unit\n", "\n", "print(f\"Frequency of signal at channel {channel}: {value:.2E} {unit}\")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Amplitude of signal at channel CH1: 2.84E-01 V\n" ] } ], "source": [ "channel = tek.measurement[0].source1()\n", "value = tek.measurement[0].amplitude()\n", "unit = tek.measurement[0].amplitude.unit\n", "\n", "print(f\"Amplitude of signal at channel {channel}: {value:.2E} {unit}\")" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Amplitude of signal at channel CH2: 1.88E-01 V\n" ] } ], "source": [ "channel = tek.measurement[1].source1()\n", "value = tek.measurement[1].amplitude()\n", "unit = tek.measurement[1].amplitude.unit\n", "\n", "print(f\"Amplitude of signal at channel {channel}: {value:.2E} {unit}\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Phase of signal at channel CH1 wrt channel CH2: 25.50738557245 °\n" ] } ], "source": [ "channel1 = tek.measurement[0].source1()\n", "channel2 = tek.measurement[0].source2()\n", "value = tek.measurement[0].phase()\n", "unit = tek.measurement[0].phase.unit\n", "\n", "print(f\"Phase of signal at channel {channel1} wrt channel {channel2}: {value} {unit}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here are all the availble measurements" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('amplitude, area, burst, carea, cmean, crms, delay, distduty, extinctdb, '\n", " 'extinctpct, extinctratio, eyeheight, eyewidth, fall, frequency, high, hits, '\n", " 'low, maximum, mean, median, minimum, ncross, nduty, novershoot, nwidth, '\n", " 'pbase, pcross, pctcross, pduty, peakhits, period, phase, pk2pk, pkpkjitter, '\n", " 'pkpknoise, povershoot, ptop, pwidth, qfactor, rise, rms, rmsjitter, '\n", " 'rmsnoise, sigma1, sigma2, sigma3, sixsigmajit, snratio, stddev, undefined, '\n", " 'waveforms')\n" ] } ], "source": [ "from pprint import pprint\n", "\n", "print_string = \", \".join([i[0] for i in TektronixDPOMeasurement.measurements])\n", "pprint(print_string)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Measurement statistics\n", "\n", "We can measure basic measurement statistics" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The mean amplitude of signal at channel CH2: 0.284 V\n" ] } ], "source": [ "channel = tek.measurement[0].source1()\n", "value = tek.measurement[0].amplitude.mean()\n", "unit = tek.measurement[0].amplitude.unit\n", "\n", "print(f\"The mean amplitude of signal at channel {channel}: {value} {unit}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can do the same with all the measurement which are supported by the instrument. The following statistics are available: `mean`, `max`, `min`, `stdev`\n", "\n", "### Statistics control\n", "\n", "A seperate module controls statistics gathring: `tek.statistics`. For instance, The oscilloscope gathers statistics over a set of measurement values which are stored in a buffer. We can reset this buffer like so... " ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "tek.statistics.reset()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The following parameters are available for staistics control: \n", "\n", "1. `mode`: This command controls the operation and display of measurement statistics and accepts the following arguments: `OFF` turns off all measurements. This is the default value. `ALL` turns on statistics and displays all statistics for each measurement. `VALUEMean` turns on statistics and displays the value and the mean (μ) of each measurement. `MINMax` turns on statistics and displays the min and max of each measurement. `MEANSTDdev` turns on statistics and displays the mean and standard deviation\n", "of each measurement.\n", "2. `time_constant`: This command sets or queries the time constant for mean and standard deviation statistical accumulations" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Future work \n", "\n", "The DPO7200xx scopes have support for mathematical operations. An example of a math operation is a spectral analysis. Although the current QCoDeS driver does not (fully) support these operations, the way the driver code has been factored should make it simple to add support if future need arrises. \n", "\n", "An example: we can manually add a spectrum analysis by selecting \"math\" -> \"advanced spectral\" from the oscilloscope menu in the front display of the instrument. After manual creation, we can retrieve spectral data with the driver as follows: " ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "from qcodes.instrument_drivers.tektronix.DPO7200xx import TekronixDPOWaveform" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "math_channel = TekronixDPOWaveform(tek, \"math\", \"MATH1\")" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting experimental run with id: 9\n" ] }, { "data": { "text/plain": [ "([], [None])" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXe4XEXd+D/fPbt7e3oIkISEEgg1EAJIJ/SOgCBFmvJiQbELvoJgQZGfgIAoRQQUFXgVEQQRBAkdkmAihJYQAgkhvd+2bX5/zMzZ2b27e/eWc3OTzOd57nN3T5vZs2fnO986opTC4/F4PJ7OiK3vDng8Ho9nw8ALDI/H4/FUhRcYHo/H46kKLzA8Ho/HUxVeYHg8Ho+nKrzA8Hg8Hk9VeIHh6TIicquIXLG+++HZNBARJSLbdfPc4SLyjojU9na/+gMi8oyIXFjFcTUi8raIbNaT9jZagSEi80SkVUTWicgiEblbRBr7oN0vicjV5vWzIrKbs69GRG4QkYUislJEfiUiiSqve4iI5Mzncf/2jeqzlEMp9QWl1I/6ul0RuUpE7u3kGPu9rxWRVSLyooh8QURizjF3i0jK3L8VIvKkiIx39u8kIg+LyGpznX+LyH5V9O/AEt+PEpFTzf7zRGS6iKwRkQUicq2IxJ3zh4jIX0WkWUQ+EJGziq5/ltneLCIPiciQas/dhLkMuEsp1ba+O7I+UUq1A78FLu3JdTZagWE4QSnVCOwO7AF8tw/a3BOYbgaoHYE3nX2XAZOAXYDtgYnA5V249kKlVGPR30u91fFqEJGgL9vrJicopZqAMcA16B/JnUXHXGuejVHAEuBuABHZFngBeB3YGtgS+CvwRGfCWSn1nPvdAMcD64DHzSH1wNeAYcA+wGHAt5xL3AKkgBHA2cCvRWRn06+dgduAc8z+FuBX1Zy7qSIiNcB5QMVJxibEH4HzzH3pHkqpjfIPmAcc7ry/FnjUef8McKHz/nzgeee9Ar4AzAZWon+QUkW7M9ED1Y7Aq0X7pgGnOe/PAuZX+XkOARaU2TcEWIAeKAEagTnAueb93cCtwJPAWmAKMMY5f7zZtwJ4Bzjd2Xc38GvgMaAZONxs+7HbL+A76IH3Y+CTwLHAu+aa/+tcL4YWnO8By4EHgCFm31hz388DPgSWAd8z+45GD4hp9CA8s5rv3WzbG8gBuzif6cfO/uOAdeb174HHSlz318CzXXwG70LPbsvt/wbwiHndYD7f9s7+3wPXmNc/Af7o7NvWHN/U2bmd9PGzwFvoZ/yf9rkA9jP3f7R5PwFYBYw37+13uBY9KTq56Lf0AnCDOWeuud75wHzznJxX9IxVej4VsJ15XQP83Dwfi815dWU+20HAnKJtzwA/Mv1bCzwBDHP2nwjMMv1+BtixzLXFfL4lwGrgv87zdRzwH2CN+bxXOeeNNZ/nArNvJXqc2ctcYxXwyxL38mbTztvAYRXGsZLfp7N/NnBwV55j929j1zAAEJFRwDHoQbQrHI/+IicApwNHlbl+jTF/rEZrDzOB6cAEs/179lDzh/N+lIgM7GK/ClBKrUA/KHcYG+UNwAyl1O+cw85G/1CGATOAP5i+N6B/qH8ENgPOBH5VNDs9C7gaPTg9X6ILmwO1wEjg+8AdwGfQ2taBwPdFZBtz7CVogXIwevZuhbHLAcAO6Bn490VkR6XU4+hB836lZ/ATunB/XkULtQOL9xkz5dnoHzjAEcD/lbjMA8D+IlJfTZvmuE8B91Q47CD04ARa48wqpd519s8E7Pews3kPgFLqPYyQqOLccn38JPC/wCnAcOA54E/m+i+iNZp7RKQOLYAuV0q9bU5/D30/BwI/AO4VkS2cy++DHgCHop+t+9C/pe3Qz8Yvi0zEJZ/PEvzMfN7dzbXsM1eKXdEToGLOQg/YmwFJjJYnItubz/81cz8eAx4RkWSJaxyJ/v62BwYBn0ZPgEBPrM41248Dvmjutcs+wDhz3i+A76EnYzsDp4vIwUXHzkXfmyuBB11zpKXS9+nwFno86x7dlTT9/Q8901yHnkUo4ClgUAXJfD4dNYwDnPcPAJd10uaFwA3m9RPA3kX7f4yeLQxHD7KvmHa2qOLzHIKeJa8q+mtwjrkZbUpZCAx1tt8N3Oe8bwSywGj0A/tcUVu3AVc65/6uaP/dFGoYrUBg3jeZz7SPc/x04JPm9VsUzpC2QGsNcfKzr1HO/leBM8zrq4B7q/jeDy+x/WXy2srdQJu5f4uAh4Ftzb4McHSJ88ebvo2s8vk7B3ifMlopesBagJndogffRUXH/A/wjHn9FPCFov0fmftf8dwKffwH8DnnfQxt6hpj3ifMd/c62qxWVsNGD/InOb+l2c6+Xc29G+FsWw7s3tnz6fwWt0NPsJrtd2X27Qu8X6ZP33Ov6/zuL3fefwl43Ly+Anig6H58BBxS4tqHojXoTwCxTu7zL8iPC2OLnyNzLz7tvP8L8DXnXi507z36N3GO83kurOb7NNv+AHy/mme41N/GrmF8Umlb9iHoH/ywLp6/yHndgn6QOyAi94nIKrTZ4kKjaRyGtnu/6hx6NXomOwN4EXgIPVguqbI/C5VSg4r+mp39t6M1nLuUUsuLzp1vXyil1qFNRVuizWf7GE1olfkcZ6MFWodzy7BcKZU1r1vN/8XO/lby924M8FenrbfQg8MI5/iq7nsXGYn+zJafm/u3uVLqRKVn7KDNMFt0PJ0t0AJ7ZZXtnYcWtKp4h5kJXgMco5RaZjavAwYUHToAPeHpbH9n55ZjDHCj812sQA/KIwGUUmn0YL4LcJ37WUTkXBGZ4Zy7C4W/r+LvH6VUuWcCyj+fLsPRfqDpTruPm+2lWImewBRT7vnaEvjA6UfO9Gtk8QWUUk8Dv0Rrx4tF5HYRGQAgIvuYQImlZiz4Ah3HnuJ7UenefFT0HH1Ax3sDnXyfhib0RKlbbOwCAwCl1BT0g/9zZ3Mz+uGzuANkV69/BtqPsBKthp4L/MkMSHs7x7Uqpb6slBqplNoGPbOY7gy23cY4o28DfodWgYvDEEc7xzaa/i5E/yCmFAmhRqXUF92P2NP+OcxHD5Rue7VKqY+qOLdb/RCRvdA/mlLmtGL+BZxWYvvpwEtKqZYq2huNnqT8rsS+o9EmuxOUUq87u94F4iIyztk2gbzJahaOKcGY+GrMeZ2dW475wOeLvos6pc1RiMhItAnkLuA66ywVkTHmM3wZrckOAt6g0NzaVco9ny7L0IPpzk5/ByodYFCK/6JNRtWyED3o2n6I6VfJZ1MpdZNSak+0GWl74Ntm1x/RWutopdRAtJ+lJ/dmpOmLZSs63hvo5Ps07Ihj2uwqm4TAMPwCOEJEdjfvZwCniEi9GVw/18Pr7wi8Zwb/iWgHdwEiMlJEthTNJ9Aq8JXO/rtF5O5utv+/5v9n0YLxd0URTceKyAHGHvsj4BWl1Hzg78D2InKOiCTM314ismM3+9EZtwJXm0HHxsmfVOW5i4Gx4oTIVkJEBojI8Wj7+b1FA3Q5fgDsJyJXm1DVJhH5CnoSUG1I4jnAi47WYvtzKNokcKrSfpUQoyk+CPxQRBpEZH/gJLTvAHPeCaJDdxuAHwIPKqXWVnFuOW4FvutEYg0UkdPMa0FPsu5E/zY+Rj83oJ3sClhqjr0ArWH0hHLPZ4iZ8d8B3GB8dfY3VdK3iDbdDDKCrxoeAI4TkcNEh7t/E2hHWwMKML+RfcxxzWgTp534NQErlFJtIrI32mfSEzYDLjG/zdPQY81jJY4r+32a9yPRgvjl7nZkkxEYSqml6BmfTTi7Ae00XIx2TJZzslXLnsBr5vVEtO23mG3RD1+zafMypdQTzv7RaB9HObaUjnH+p4rInuiIm3ONwPoZ+gd9mXPuH9HCaYXp69kASqm1aAfeGehZyyJzfvdD7ypzI3r29YSIrEU/vPtUea51Ri8XkdcqHPeIufZ8tB37erTPoFOUUrPRTvcJaH/Ix8CpwFFKqUrfjcu5lHZ2X4F2Ej/mfH//cPZ/CahDmyj/BHxRKTXL9GsW2rTxB7O/yRzf6bkVPutf0d/1fSKyBq0lHGN2X4I2E15hzCEXABeIyIFKqTeB64CX0L+fXan83FZDyeezBJeig1deNn3+FzpAotTnS6GF3meq6YBS6h1z7M1obeYEtCaYKnH4ALTwWok2ES0nb8H4Elp4r0U75B+opv0KvIJ2kC9Dm7U/VcLk3Nn3CVpw3aN0Tka3kBImVs96wMysZgK7Gdtxb177bnRIbldyPjyePiHK51NEbLTQHkqp1s6O72+IyPlop/YBPbxODXp8OUgpVa3PtAPxzg/x9AVmFhOVGcjj2SQxloXxnR64kWO0ih7fh03GJOXx9AYicnYJs+A6EenMwbxeEF33q1R/b13fffNseHiTlMfj8XiqwmsYHo/H46mKjcqHMWzYMDV27Nj13Q2Px+PZoJg+ffoypVS5BMiQjUpgjB07lmnTOqQ/eDwej6cCIvJB50d5k5TH4/F4qsQLDI/H4/FURb8WGCJytOjlFeeIyGWdn+HxeDyeqOi3AsPUQboFndq+E3CmiOy0fnvl8Xg8my79VmCgV0mbo5Saa7Kg70MXVPN4PB7PeqA/C4yRFK7DsIASdelF5CIRmSYi05YuXdpnnfN4PJ5Njf4sMErVj++Qlq6Uul0pNUkpNWn48E7DiD0ej8fTTfqzwFiAs6gKMIrSi4b0GkvWtPHn6QuibMLj8Xg2WPpz4t5UYJyIbI1e8eoMer4QSUUOu24Ka9szHDRuGJsNqI2yKY/H49ng6LcahlIqg14C8p/odZ8f6GxBmJ6ytj0DwJK13V5fxOPxeDZa+rOGgVLqMUovRRgpy5tLLbDl8Xg8mzb9VsPoa7K5vD99mdcwPB6PpwNeYBjWtOZXRV3e7AWGx+PxFOMFhmGVIzBaUtn12BOPx+Ppn3iBYVjblhcYrV5geDweTwe8wDC0pXPha69heDweT0e8wDC0pvNCwgsMj8fj6YgXGIY2R2C4rz0ej8ej8QLDYIVEQzKgJZVZz73xeDye/ocXGAYrMAY3JL1JyuPxeErgBYbBRkYNaUh6k5TH4/GUwAsMQ1tGR0kNrvcahsfj8ZTCCwyD1SoG1CVIZXOdHO3xeDybHl5gGFrTWZLxGLXxGKmMFxgej8dTjBcYhvZ0jpp4jGQ8RtprGB6Px9MBLzAMqawWGIkgRrvXMDwej6cDXmAY0pkciSBGjTdJeTweT0m8wDCks1pgJAJvkvJ4PJ5SrFeBISJni8h/zd+LIjLB2Xe0iLwjInNE5LKo+5LOKhKBkIzHyCnIeKHh8Xg8BaxvDeN94GCl1G7Aj4DbAUQkAG4BjgF2As4UkZ2i7EjK0TBACxCPx+Px5FmvAkMp9aJSaqV5+zIwyrzeG5ijlJqrlEoB9wEnRdmXdDYfJQV4P4bH4/EUsb41DJfPAf8wr0cC8519C8y2DojIRSIyTUSmLV26tNuNWx9GKDC8Scrj8XgK6BcCQ0QmowXGpXZTicNK2oiUUrcrpSYppSYNHz68231IZ5QWGIFu2gsMj8fjKaTPBYaIXCwiM8zfliKyG/Ab4CSl1HJz2AJgtHPaKGBhlP1KZXMkvEnK4/F4ytLnAkMpdYtSanel1O5AHHgQOEcp9a5z2FRgnIhsLSJJ4Azg4Sj7lc7mSAbiOL29wPB4PB6X+Hpu//vAUOBXIgKQMealjIh8GfgnEAC/VUrNirIjoQ8j8BqGx+PxlGK9Cgyl1IXAhWX2PQY81ld90XkY3unt8Xg85egXTu/+QCrjNQyPx+OphBcYhnQ2RzIu3unt8Xg8ZfACw5DukOntBYbH4/G4eIFhSGcV8ZgPq/V4PJ5yeIFhyORyJJywWu/09ng8nkK8wDBkc4ogJtR4DcPj8XhK4gWGIZNTxGN5p7evVuvxeDyFeIEB5HIKpSAWc0xSmex67pXH4/H0L7zAALJKaxOuhuF9GB6Px1OIFxho/wVAEIuRMNVqvUnK4/F4CvECA+2/AKNhGJNUu3d6ezweTwFeYABZo03EYoKIkAjEJ+55PB5PEV5gUOjDAEgGMR9W6/F4PEV4gYFO2gMIrMCIe4Hh8Xg8xXiBQd7pbTWMRBDzJimPx+MpwgsMIOP4MMBrGB6Px1MKLzDoqGEkg5jPw/B4PJ4i+oXAEJG9RCQrIp9ytp0nIrPN33lRtm+d3t6H4fF4POVZ32t6IyIB8DP0+t122xDgSmASoIDpIvKwUmplFH3Iaxhafibj3ofh8Xg8xfQHDeMrwF+AJc62o4AnlVIrjJB4Ejg6qg5YH0bgOL29Scrj8XgKWa8CQ0RGAicDtxbtGgnMd94vMNtKXeMiEZkmItOWLl3arX7kS4P4PAyPx+Mpx/rWMH4BXKqUKi4NKyWOLVncSSl1u1JqklJq0vDhw7vVieLEvUQ8RsrXkvJ4PJ4C+tyHISIXA/9j3g4E7hMRgGHAsSKSQWsUhzinjQKeiapP2eLEvSBGezrLKb96gcH1Se48f6+omvZ4PJ4Nhj4XGEqpW4BbireLyN3A35VSDxmn909EZLDZfSTw3aj6ZAsNhmG1cWH+ihaaU1nbZ4xQ83g8nk2W9R4lVQql1AoR+REw1Wz6oVJqRVTtnXvnq4CTuBfEQmEBsKYtw8C6RFTNezwezwZBvxEYSqnzi97/FvhtX7Q9oC7BiuaUo2EUunaWrGnzAsPj8WzyrG+nd79gkBEGblity5K17X3eJ4/H4+lveIGB1jAAciZaymoYw5tqAFjbllk/HfN4PJ5+hBcYwKB6LTBWtaQBCIyDe4/RgwBY1+4Fhsfj8XiBAVyw/9YA7LjFAADGjWgE4MBxwwBY15ZePx3zeDyefkS/cXqvTw7efjjzrjkufP/pvbZin62HssWgWq7426yCiCmPx+PZVPEaRhnGDmugJh6QjMd63YfxtxkfcfQvnmV1q9dcPB7PhoMXGJ3QVBNnXXvvDux/evVD3l60ln+9ubhXr+vxeDxR4gVGJzTUxFnXyxqGLaO+siXVq9f1eDyeKPECoxPqkwGt6d71YbRn9PVsVJbH4/FsCHTq9BaRScCBwJZAK/AG8K8oS3X0J2oTAa3p3i11vnyd1iy8huHxeDYkymoYInK+iLyGLvpXB7yDXuToAOBJEblHRLbqm26uP+oSAW29HCW1yji7V3mnt8fj2YCopGE0APsrpVpL7RSR3YFxwIdRdKy/UJcMWLaud0uDtKS0T2S1MUmtbE5x/M3P88VDtuUznxjTq215PB5Pb1FWw1BK3VJOWJj9M5RST0XTrf5DbSJGay9qGLmcos2YuKzgeHb2Uj5a1cr9U+dXOtXj8XjWK5VMUrUicp6InCiaS0Xk7yJyo4gM68tOrk+0D6P3BEZbJn8t6xuxzm+/5IbH4+nPVIqS+h164aLPole72wr4JbAWuDvqjvUX6hIBbUUCQ6nuL9/a4mgr7enCaCm/jrjH4+nPVPJh7KSU2kVE4sACpdTBZvvjIjKzD/rWL6hLBAUmqS/eO53nZy/j9R8c1a2V+Oy1RAg1l1WtOlrKh9l6PJ7+TCUNIwWglMoAC4v2bTLFlepMHobVKv7xxiLWtmf41TNz2PenT/P6gtVdup7VMIY2JEOBYZ3fa3yRQ4/H04+ppGGMEpGbAHFeY96P7K0OiMghwC+ABLDMajIicjRwIxAAv1FKXdNbbXaF2kRATunZ/wBn1b1rH38HgIdmfMSuowZWfT3r6B7SkOSD5S1APrzWCia/frjH4+mPVBIY33ZeTyvaV/y+W4jIIOBXwNFKqQ9FZDOzPQBuAY4AFgBTReRhpdSbvdFuV6hNBADs8aMnOX+/sQX7YgIfry4bSFYSa5IaXJ/k3cXryOVUKESUgrZ0jrpk0POOezweTy9TVmAope7pg/bPAh5USn1o2lxitu8NzFFKzQUQkfuAk4A+Fxh1ifzg/df/fFSwb99th7JwVVuXrmejpAbXJwFoz+TCMFvQGogXGB6Ppz9SVmCIyCNA2XAgpdSJvdD+9kBCRJ4BmoAblVK/Q5u83KSEBcA+Zfp5EXARwFZb9X7ieV0y7+YZVJ8oKEm+xcA6npu9tEvXS2X0LR1Qp299azpbEIXV23WrPB6Pp7eo5PT+OXAd8D66htQd5m8dup5UbxAH9gSOA44CrhCR7dF+kmJKCi+l1O1KqUlKqUnDhw/vpW7lcTWMTLawC1sOrGXxmnZOv/UlMtnqQmLT5rgBtdof0prO0prOEo/pj9ybSYIej8fTm1QySU0BEJEfKaUOcnY9IiLPdrdBEbkY+B/z9gHgcaVUM9BsrjsBrVGMdk4bRcdIrT6h1hEYS50SIUFM2HxgHQCvzlvBvOUtbLdZY6fXswKjoUbf+nQmR1s6y+CGJEvXthfkaXg8Hk9/opry5sNFZBv7RkS2Bro9lTclR3ZXSu0O/BU4UETiIlKPNju9BUwFxonI1iKSBM4AHu5umz3B1TBsYt1pe45iyrcPoTaRv31vL1pT1fXyAkNfN5XN0ZrKMrRB+zSiFhgLVraQzXU/8dDj8Wy6VLOm99eBZ0Rkrnk/FuMz6ClKqbdE5HHgv0AOHT77BoCIfBn4Jzqs9rdKqVm90WZXcTUMy95bD2HU4HqGN9XwzqK13PbsXBasrC5aKmXMWlbDSBmnt3WCt6Z7d7Eml9ZUlgN+9m/2324of7jwE5G14/F4Nk46FRhKqcdFZBww3mx6WynVa+VblVL/D/h/JbY/BjzWW+10l1IRS4lAaxY18YDLjhnPPS/NY9na6m5J2mgpjUZgtGeypLI5Bjdon0ZbL6+94bJkrY7oemHO8sja8Hg8Gy+Vig8eYF8rpdqVUjPNX7vZP0BEdumLTq5PkkHHWxTE8j55EWFYY03VJdCtSao+qQXGGrP8q3WCp6t0nneHUn18/I2P+ezdU8l5M5XH4+mEShrGqSJyLfA4MB1YCtQC2wGTgTHANyPv4XrGmo7O3XcMv3vpA4AwosmiBUZ1q+eFPgyjuawxYbo2i7w9wgKES9fm+5jK5EjGY3zh3tcAvfrf0MaayNr2eDwbPpWipL4uIoOBTwGnAVugw2vfAm5TSj3fN11cvwxvqmHKtw9h5KC6vMAo0jqGNdawYGVLVdezPoxaIzCa27WTu9HxaUTF8ua8hrGqNcVmTbXh+2XrvMDweDyVqejDUEqtJJ9/sckyZmgDoE1R2ZzqoGEMb0oyY/7Kqq6VzuZIBrHQ1NXcrk1SYZhthCYp2xbo2lhDjKMdtLlqB5oia9vj8Wz4VBNW6zEEpihgPOhoklrRnKoqXDWdyZEIhGRc3/p1ZhBv6gMNo91xqK9pTResKd7by9B6PJ6NDy8wuoAtIhuU8GHkFLy3dF2n10hncyTi5TWMKAWGu9pfWzrHqpa8T8OvxeHxeDrDC4wuYE1R8VjhbRsztB6A26bM7XBOMamsIhHESBgNo9kk6tUbn0aUJik3ZLctnS0QEr6Glcfj6YxOBYaI1IvIFSJyh3k/TkSOj75r/Y9YrLRJ6uDthzO8qYYPVzR3eo1URvswEuYaVsNIxmMk4zHaIxUYjoaRyRYIkKhrWD0/exn/+9fXOyx36/F4Nhyq0TDuAtqBfc37BcCPI+tRPyZmfRhFJikR4cidRvDu4ipNUoGEJim7FkYiiFETxKI1SRUJiPZM31XJvenp2fzxlQ955p18dd8X5ixjufedeDwbDNUIjG2VUtcCaQClVCulq8lu9FjfRbEPA7RZanVruqD8eSm0wIiF2eLrHA0jEY9Fa5LKZBlQGzevcwU5H1FrGHYZ2pXGbzL9gxWc/ZtXuO7JdyNt1+Px9B7VCIyUiNRhyouLyLZojWOTw8qJRIns79GDtR9j/orK+RhWYNgoKZuHYbWOaKOksgyyCzelswVtRa1hWEFo/SZ2LfTFq7u2AJXH41l/VCMwrkRne48WkT8ATwHfibRX/RRrkiqlYYwyAmPhqspFCFNZRSIeC81azcYkVWN8GJEKjEyOQfW2ZlXeJFWfDCLXMNYaTcpqYKs60cQ8Hk//o5rig0+KyGvAJ9CmqK8qpZZF3rN+SBAr7cMAGGhKe6xtq1xtNp3JURPEENEahXV6J4wjPJ2NrqZTWzpLQzJOEBNa09nQJDWwLhG5hmFLoKxu1SYpq2l0ZsLzeDz9h0rFByfaP3TdqI/RixhtZbZtclgNw/53aTS+gXXtnQiMbI5EXJ+fCIQWY5LSUVJBpLWk2tI5ahMx6hIBbelcmMg3sC4RqYahlAo/lxUUVoCsaK6uBld3ac9kOefOV3jpPV+h1+PpKZU0jOvM/1pgEjATrWHsBrwCHFDmvI0Wq2GUyui2CyJVIzCscEnEY+EM2/o1UhGH1dYmAmoTsQKT1OD6JC0RahiuELR5J9YktaYTjaynLFjZynOzl/Hc7GXMu+Y4AJ5+ezFzlzZz4YHbdHK2x+NxKathKKUmK6UmAx8AE8262XsCewBz+qqD/QlbILCU0agmHpAMYp2apGziHmghoczFkvEYyUDC9TKioC2jBYZ1rrdncojoLPOofSdhH4zAsBpGaypagVFKg/ns3dP48aNvRfqZPZ6NkWqc3uOVUq/bN2ZFvN2j61L/5bZz9uTrh2/PWJPZXUxjbZx17Z2H1docDHetjWSfaBjaJGXbSWVy1MRj1MRjpDJRahiFCYOQX4q2JZ1Fqej8NsuLys67634s9TkgHk+XqEZgvCUivxGRQ0TkYJPx/VZvNC4iA0XkERGZKSKzROQCZ995IjLb/J3XG+31lNFD6vnq4eOQEj4M0BrIus6c3iZxDwhDa0E70qMOq21LZ6mJByQCne/RnsmZ99E629tLZJTbjG+lol0DxNUwcjnFOkejWVrlKondpbk9wyIfNuzZiKhGYFwAzAK+CnwNeNNs6w0uBt5USk0ADgGuE5GkiAxBh/PuA+wNXGnW5ujXNNXGOw0X1dVqrUkqL3iCmIQDeVS0Z3LUJPLhu+2ZbB+F8xrHfhALo7HcqKyWCB3uK50Ci2va0mECIcCSNdEO5j94ZBaf+OlTYah1c3uGY298jmffXdrJmR5P/6RTgaGUalNK3aCUOtn83aCU6q1fmgKaRE/ZG4EVQAY4CnhSKbXCrMnxJHB0L7UZGVtpXCPcAAAgAElEQVQPa2DOksrlQWweBuQTAIOY6DDbCAfuXE6RyuSojQe6ZlVGR0nZGlZRm8IABtYnQs2iJZWlLhGY19H5Mdxrr2xJFxRcjDqk96EZCwGYtXANAE+8uYg3P17DHc91XqTS4+mPVFN88H0RmVv810vt/xLYER2u+zo6xyMHjATmO8ctMNtK9e8iEZkmItOWLl2/M7fxmzexYGVrwUJFxaQy2dB34QoMIBzIo8BetzZRbJKKkQyCPtEwBjnhu63pLEMbddZ5lCG9rvbS3J5hVWte44g698R+z1bLmb9CaxojBtSWPac3UErx+5c/YMlabw7z9C7VmKQmAXuZvwOBm4B7e6n9o4AZwJZoR/ovRWQApWtVlTSyK6VuNxFck4YPH95L3eoedslT1wxSTDqr8j4MM6DYRMBkhCYpO7OvTVgntzVJBSTiEqmGYX0Yg+p1gmDWaDtDG7TAiNIk5QqjtnS2oK2os9tTYTkU/TzY5yJqzebdxeu44qE3OPmWF8Nt//lwJf96c3Gk7Xo2fqoxSS13/j5SSv0COLS7DYrIxSIyQ0RmoH0YDyrNHOB9YDxaoxjtnDYKrYX0a2x+ha0PVQpbSwryTm9Xw4hq4LbRSTasNp1VoU/DVsmNKlopn1GeJKdgbZseMIf0gcAoEBDpbEF59SjbtSZAyCcr2v9RV+i1qyd+5JSpOflXL3Lh76ZF2i7ArIWreX72JlkIYpOgGpPUROdvkoh8Abq/+LNS6hal1O5Kqd2Bt4HDTDsjgB2AucA/gSNFZLBxdh9ptvVr7Kp55UJrczlFJqc6OL1dDSMq05D1I9TEdaVcm4dhnd5AZJFSoUnK1LFabiKXBptCiFFqN8UaRUFOSB8lK64sqtQb9eqGxcvtFpSxj1ir+uQtL/CZO18JfUcLVrZwzp2v8N8FqyJt19M3VGOSus75+ykwETi9l9r/EbCfiLyOLmp4qVJqmVJqhdk31fz90Gzr19jEvnLJe+mcHkSSHZze5n2E5c3bXQ3DaDI2rNb2JzLtxgirAbVaYNgBs6k2+mVpW9OZUFC1prO095GG4Qojq1FZwRG172RZUe7Jmtb887i8OVrtxk46rKP/nhfnhZn2UZLLKe59+YOCMOY3PlrNE7MWRdrupkY1AuNzNutbKXWEUuoioFcKACmlFiqljlRK7aqU2kUpda+z77dKqe3M31290V7UNHVST8rOOkOnd7yUD0MVJJf1Fimn7VDDSGf1OhymP1FlmVthVXx/mowAiTKUuCWVDU1fbU7BxabaeKQDt6th2HtvgyGiFFQAK4xQENED6Zq2vEZTnMgYFSuNFmknC1G3+5/5K7n8oTf47N1Tw23H3/w8F/1+eqTtAvz0H29x/l2vhibdl+cu57zfvsoHyztfgbOnrI5YWy2mGoHx5yq3bfJYDaNc8p7dbgfOZIkoKYhmpm9nfvFAOmR6R61huIM0QIsZOOtrol/HvDWVDZ3rram8D2NwfTJS80zhcri5gm1Rm4WsD00pXT7fdbJHXezRYs1vK8z/xRFHbC1cpa9v/TbuPY6ykgDAbVPm8sw7S5m3XK+Fc+/LHzDl3aW8MCfagpdvfLSaCT98gvunfhhpOy6VqtWOF5FTgYEicorzdz66IKGniM4q1toZpvV1hD6MoqipKAbQjLlmInCjpHJhDSyIzjRko6QGmBLw9v40JPV9iDLTuzWdDX0ldpVBERhQF62G0eb4DawZzM62U9lc+H1EgRvWvaYtE9btgvy6JFHgCskVzdbRrwVG1EmSi83165N6EuKGT3dWELS3sMEMthJE1GHN7y3VOV93Pv9+pO24VKpWuwNwPDAIOMHZvhb4nyg7taFiB8ByD6j9sVrBUhwlVZPQ79vSOZp6WSRnjJkrHhNTCsSE1SbyGkZUA7cdSOzysNYkU5eMXsNoT+fCtUqshlEbD6hLRLtolFsOxd5X13/Sms7SVGLlxt6g0NGfKfCpRVns0X3uraCwgqNS5GBvYH0XVplY2ZwXkiub06H5M0qsJmcF9pKIS8+sj7VkygoMpdTfgL+JyL5KqZf6sE8bLEFMaEgGnZukQg2j0IdRn7QDagao6dW+2UE5HuRLgQQxMYl70Wk2oAfMmOQ/X7GGEWWF3lTWhA7HY+GiUVZItqWja9cKyYZkfo2TtkyWgXUJVremaU1lIxvEmh2h0JLKFgjGKAdutx3rN7HaTXuExS0hH2iSX9Exr2GsaEmxVZmCoT3F1apWh4uE6f9L1kQdPq0/YwQuz7KUFRgi8h2l1LXAWSJyZvF+pdQlkfZsA6WhJl5Ww1hXrGEURUk1VrmmRnfIGB9GItA1qzI5FRYjDH0YETq93XZsyKX1YUSbNJglGQShkLQaRjKIFUQP9TbWbzGoPkl7RicrprOKIQ1JLTAiNIe1tBdGgrnlUSI1w7l+GyOMQ2EZoXCGvAmw1axV74Yur4lwJu62U7yKpBtsEAU2uCHqMG2XSiYpW5E2+myfjYjG2nhZO7HVMBqLNAxrmbC+jShmgRkT0huPFeZdJPvA6e2WVYf85ws1jAgr5VoNIxnEyORyHQowRoU1Pw2oS7CmNR0OpjbEN8pIqXXtGYY1Jlm2LkVrKkurM1hXKlvTU1xhZLUNex+i1jBc7WZde6HfJtp73bE22epwrZe+0apWtqTI5RSxEktH9zaVTFKPmP/3RN6LjYimCiXOi00xVmCIqYSSFxi9/6NOOxqGuw6Ha5KKXMMIrMAwGobxYURZcDGdVSSDGPFASGdUXsOIB9EWXMzY3JM4S9e2FURnQbQz/ZZUhmGNNSxblzImqXx0XrS5J05SpBEQ9n975BpGYUJmYTXk6ISkO7mzA7gVFM0RLw5m72k2p0hlc9TGgkjbg8omqUcoU78JQCl1YiQ92sBprI2XHfDdAoCQd3orc5vDsNwoTFK5Qh+GJWHCbCFKgZH3I0D+h5QIYiSC6OpY2evaXJO0q2FEvPaInVkPrEvQns7lTVTGAR/lANqcyrLloDpAD5ataV0ZuCEZj3TwtIN0EBPa0nkzHBRGjUVBW1EJmL4qn+/+1lvT+nVfhU+7Wlt7JheOK1FSyST188hb3whprImzfF1LyX32QaoJM721ZmHG8j7RMOxCTZZEkE/ciywPI12Y72FnZVbbiS5hsLAcSjrrahjRVQYGR8OoS9BufCf2vd4f3WCSyuTyocSm4GJ9MqC+JgjXVI8CO0AOrk/Qls6FA1p9MqAlpQVIEJHZpNgc1lZi0a4ocCd3Laks6WwujEiMOkHTfX71vY4+EqySSWqKfS0iSXRRQAW8o5Tqm+yfDZDGmkTZ0iBtGZ1ZHStK1MuZWMDGTsJye0Le6V2sYeRn/pHVsbJriccLTVKJIBZpOZRUgcDQ66W3Z3I01sSjX5bW0TBS2Vw4aA3sAw0jnc2FgslGSdUmAmrjQcFMvLdxzW5t6fygPbAuQUsqS3smG0bKRdF2owk4ac/o8OlkoBNUI9UwjMZWm4jR4iSGJoNYH2gYjsCI2ORnqab44HHAe+iy5r8E5ojIMVF3bEOlsSYoOeCvaUvz9sdrw8EZ8j4MKzAaauyCQhE6vU2UlCXpCJAoE/dcX4md5Vrtpq9MUplcjrZ0vn5WpNFZmfxgCXn7ts12j9IJrAVGPuelNa01jEQ8RjrCGMxWR2C0Z/Iahr0HUUZKtaaz+ZphKa3R1dfo77klHb0PY3hTTWj+AxjcoCcK0a6gWWiS6guqLT44WSl1iFLqYGAycEO03dpwaazVs5zicgSn/OpFpry7tMDOmBcY+n3czPYjdXrHijSMuPRBaZDCsNq8hmHXMY9mEAvrZ8VjxIMYqazKJyv2wfrpIh39UnmBEU3bSmm/QU08IB7T/qHWdJa6ZEAykEgzzO2MepBZWdHVMCDa6sBt6UIzXKtZ0bE+GRSEGfc29lke3lijtSjzmW1fotRu2tO50MQXdRSapRqBscSsVWGZCyyJqD8bPI01CbI5VTCbmjZvRbh0a22i0OEMeQ1Dn18+j6MnZLJ5DaOcDyO6xZt0WK1tx87C4sbpHXWFXh2hZUxS6fwytTlFZAOo9ZXYCYINv7TJeu0RDZ52YuCu1W5rhkW9ZnxrB5NUkRkuYgHtViVuM07g+kQQ7QJd5jMOaUiaEGb9vi9Wk2zP5MLqCX2lYVRjUJwlIo8BD6B9GKcBU0XkFACl1IMR9m+DwyblrWxJ8fl7X+fcT4zhrhfztV7iscKQVsiXMwCdzBaFhhGWBnGioqDQpxF1WK2dDbl23lhMyEZUHK64Qq8th+LmhKSzingEwSXFkWHFOThR/cCtQLDRb6mMNovEY1rLitLp3ZbOEnPqdBWb5aLVMLIdNIzaRIBI9Oa/eExorIkX+DDsZ4566eMBdQlWtqT7zIdRjcCoBRYDB5v3S4Eh6PpSCvACw6HB5BacfttLLFjZyrPvFq4z7pqqin0Y+vw4/5y1mPeXNbP1sIZe61c4kBSZpJJB3rcQ5XriNfEYgRQKjHggxGNCNqLEvWKTVLOJnikuuGhrWvUmVsOw9cGK64hFLzBi4ZK/qayiLhnrE5NUXSKgJh6EEWkQvYZhI5MG1+cFk50YRNmublsviFaXjBeUYbFrv0TtJ7PLQveVSapTgaGUuqAvOrKxYNXfBStbS+53h8a4XarVMRE11ujZ2eSfP8O8a47rtX5lsoqYQCxW6PROBH2RuKdn27GYEJPCEN+YRKdhFJR0D6OkCjWM9mw04Yg6Lj5GjVFfrIZRn9Sz3qhm2ylXYBgNI5PNkTTBDlGbpOqSAfFAjFm2KJQ4os9szUCDQg1DR6XVxgOUilazSWVyJAIJo+7ccGq7Pyra0/nghn7j9BaRrUXkehF5UEQetn9dacSUSn9JRNpF5FtF+44WkXdEZI6IXFbU7isiMltE7jehvf2ek/cYWXG/OzbacsjjRjSG22wuBuRLNvcG6VyupIBKBEIspmf60fkwsuHAaU1yiUAQEeKBRLJgFOS1uZjowbI9kw0dwtZUFJUqbz9zaJJyQolrIswBsULSRr+1m0idRJDPRYmK1rQ2A9kJiY0gsnb2qAbufDhv3oeRzumyN1Hea9DaTdKGbWeVo2HEw/1RoJQO4LCaTL8RGMBDwDzgZgqXa+0KK4BLKEoGFJEAuAU4BtgJOFNEdjK7fwbcoJQaB6wEPtfFNtcLDTVxfnX2xLL7laNj7L/dMDZrquGrh20fbmt0BMY+P3mq1/qVySoSRfkfkF/1L8raSlbDAKeUuxEggUjoX+ltrOYSxIR4EAsH7ZpELMwHiKpEh3X0h05vo2EkA70tMqe3+Q4TcQkjwbSfxpRHibIciskot8Ec1hc3sD7aQa0tpa/bUBMnEegs84zxLdQkgkgHU61haJOnrlVWqFVFZZLK5BQ5lTd9RfU8FVOND6NNKXVTTxpRSi0BlpicDpe9gTlKqbkAInIfcJKIvAUcCpxljrsHuAr4dU/60Vccu+sWZfc11eTNHyMG1PLq9w4v2G9/bJY/T1/AloNq2W/bYT3qUyab1zDcNtxV/6IwDSmlTJROELYDeaEVi0mBD6c3yeZcDUPCyLV4TMI6VlFF0FhHv9Uw1joaRjwWXQ6I68OocaKkwqz6iH0YroYRhhLXRGuSslnzdUmdnNiazpLJKuJGe45yMC3W3op9GFFXMehrk1Q1AuNGEbkSeAIIC7wrpV7rhfZHAvOd9wuAfYChwCqlVMbZXtnW08/Yakg9H67oWCLEOgDLEZNCgfGt/5sJ0GN/RjqnnBX+OiYPBjEJB9jeJF8/q2g5WmctkExEZhIrhwJTDsUOWDGR0NHdElH1Vr0IVjzv9DalrhPW0R+RVmXvd4EPI5dzIsWiNUnVJYLw+bIaxoCIs9vtIF0bD6hNBlrDyOnIsFhMIvUjaKe3hNp7cb5NdOV2CgVTfzJJ7YpeYe8a8uao3qozVaqwjKqwveMFRC4SkWkiMm3p0qWlDlkvPPH1gzhhwpYdtncqMMrU2hl72aPMNwLo/WXNPDBtPvOWVb/IfMaEVgLhww3OMrFRCYy0Lc9hfRiFqwtG6fTOaxja8W1/VEGfaBg5o2EUrnGSiMeMcI6k2VCDsD4MnW2sZ9tRm6Ra0zlqTYIg5DP681FS0Tq965IBtQm9MFYmpz9z1D6MVDZHMh6Ept01bYVCMkozr9tOv4mSAk4Gtulq/SgRuZj8Uq7HKqUWljhsATDaeT8KWAgsAwaJSNxoGXZ7B5RStwO3A0yaNKkP156qTG0i4LrTJjCkPsE9L33AlgNrGVif5JtHbl/xvEBKCwyAv7y2gLP23orjb3ou/DFO+fYhbD6wlmQQC9cSLoVV0aG0hhGTaASG/TGX1TACiWzmmXWc3jVOskXMFRgRmSva01kTJVWYh6FzT4jMDJd2aoYlzCJRaWNnj9ok1Z7OUtNU4zi9C2fbUZUGaQufsfzSu5msIh6zTu9oTVJJozVCXpNsCp3e0WqSYeWA/lJLCpiJXte7SyilblFK7W7+Sg72wFRgnImISgJnAA8rHd7yb+BT5rjzgL91tQ/rm2Q8xnG7aS1jQF2Cf3z1QMaNaKp4TqVFUH7xr9kc9YtnC5KvPnPnK+xw+eP89oV5Fa+rTVL5QdrtI0SnYdhVx6zqHC/2YUTo9FaO07veybWICdRZp3dE5b6thpFfZTBfPyuISDhDUeKedXr3kUkqa8ye5UxSUUdJ2SCDtow1SemJQtSFHt1qCWvbMtTE8+HUqWx0PjLQQjIZRKtFuVSjYYwA3haRqRT6MKpeD0NENkev3DcAyInI14CdlFJrROTLwD+BAPitUmqWOe1S4D4R+THwH+DOatvrT7jFBqsh6OTwlUXLMc5fofM9fvT3N0kGwoC6BPtuOzRM6AGYMX8Vj8xcyJYD9bZErISGEZHAsKuPWbNEENgoqbygis7prf+7PgvQWly9iV6Kao3rNqNh2HvdktK1pYKYRJvdbgVGvNAkZQe1bE5FtjqbLl8eC01S+QXDAmISnZ3dLrU7oDZBrathBEJNIhZpKfl0RhUJjHRBZeZ0RHXS8qbe6LUol2oExpU9bUQptQhtViq17zHgsRLb56KjqDZo4kHXfpg1PahTccXftKzdc8xg/vLF/bjpqdn83/T5oVBZuLqtQ58KNIwIBrHVLYUCw/pRbLtBhE7vfFgtoYAALRytAIkqrNZqGIm4tedn8gEGEl3uiS1fXmcGLbuQkfVhgM7JqYlgdbZMThFI/jte154hGdem0tpEEJmG8bF5rjcbUENdImBVa1r7MGLah5HOqsjW4khlcwxIJsJ7u7YtUxBa3B5ZnbS8b7Am0XcaRqfTX6XUFPcPyACnR9+1TZNLDh3X4wd79uK1PDB1Ptc/+W4oLFziJZzesZjwtxkL+c1zc3vUdjGrjIZhC8Plw2r1gBWT6DSMnBNW667DoH0aMUSiKw4XahhBvl5YQQhzRALDmr7qk0FB5WM3oz8qs5TVMKwDuDmVpca0GaXzedGaNoY1JqmJG6d3KhuGkUddWDOV0T4Me2/XtWd0JQHbboT12QBTryxas5tLVauZiMju6JyI04H3gb9E2amNCTtAVrt84sD6BD89eVe+85f/drvNNW2Ziue7znFrMvlguY7A+vGjb3Hm3luFa0iUIptT3PjUbJata6c9neMvry3gpjP3IJPNMbAuwWE7jgiPLTZJhVFS8bw/JarBM+f4MApMUjF9D2oiWhMjY2ob2RLjFtdvE5WQtEuw6nLmsVCAdFj3pKb3286aWb2buGfbrIkHkZlNFq9pC02wdaEPQxVUZk5no1nC1Pow4o4ZzvVdRbmKJeRNUlHWrHKptKb39mgn9JnAcuB+QJRSk/ukZxsJO4xo4iuHbsen9xrd+cGGzuzLu48exIz5q3ratYK23EF75yv/yX7bDuWuC/YyJZQLQ4GnzlvBTU/NLth2yZ/+E752c0bsDNdmsHdI3CvhAG5NZVm2rp3RQ+p79NmyBRqG6/TOZ5tHEfZof7y1CW2OsWUj7AJZ8SA6R78VEA3JOMl4LGwnEUgYqRaVaSiTUwTOAl3N7ZlwYlAbodmkJZUJn6/Qh1EkvKIye4YCI5YvNVNTl09ejDqs1gqnvsr0rmSSehs4DDhBKXWAUupmoG96tREhInzzyB0YNbj6wc+dlT7w+X05a5+tCvZ/5dDteq1/5XjxveXscPnj7HbVExx/83O8OGdZuK84ubAYV/1vS2eJx/KRM6GG4byfu6yZz909NTzn/Lte5cBr/93hurmcYlVL9dHddhYf66Bh5IXWnCXr+P3LH1R9zWpoc2Z/kLfpNxizWFQhzJAXGHWO4xV0KLWdYUclMLK5HIHkBca6Yg0jIrNJKpML26lN6Exvre3kzWNRmaRsQEEybhcyyhGTfKZ9FEsVQD76qiYei7z8iUslgXEqsAj4t4jcISKHUTqhztPL2Fn/AdsNY++th/CTk3cN98288siwKifAyEF1kffnjY/WcNZvXmHsZY/y8tzlnc6avvvg67w8dzn7/fQpVjSnCkwB9rOFiXvm/VNvL2HhqlZunfIer7y/AtAC4v1lzSxdq4Pzrn/yXXb/4ZMVhUZ7JhuG09oxOSjhwwD9Y3t+zjKueOiNXh1E3ZBHyPuJXC0rKpNUq/GdxGJCMsjfdzfUMypHv3Us20lBgUkqEV0kTypbKDDWOSs6WpNrlMsAJ+N5DSOVyYbPV1NtIkzk623spCRfYHE9axhKqb8qpT4NjAeeAb4OjBCRX4vIkX3Su02UeAWTVH0yCNc0mDRmMC9cdmjJ42ZeeSSXHDau1/t2xu0vc/5dr1Y85s/TF/Ct/5vJwtVt3Dd1fsnQ4mGN2ojuJirud83TXPOPt8P3qWyOyT9/hv1/9jTvL2vml//WCz/+/Il3Sq7r0JLKsMPlj3PDk+8ChZneboa9KzAs4694nGfeKb2Q5LR5Kyr+IDPZHK8aIQeOhpGwtbuMhmEFRoQaRnN7JhSOroZRkwgck1REiZLGDGTbzal81F+UTm/teNZt1iUCpyRMLIxSS2cVSil+8Mgs3lm0ttfatol79ju2GgboOk82D6m3yOUUL89dHk5wbHBDlOulu1QTJdWslPqDUup4dGjsDOCyTk7z9IBKJp9EEAurf+45ZnDZ4wbWJTotQ9JdqrG/u+uBuBrGymatHWxuckKaKyTOWRNGKpPj0OueCbff+/KHPDwznwv64pxl3D/1w9DBft9UXZ7MNUkNa8xrZcUVcy3n3zWVYhatbuNTt77EpX8uH0Rwy7/f4/TbXuLxNz7W/XaWhoW8wLAaRiwGOfP7fuz1j/nPhytZuCp/v/7+34Vc+uf/dnmwaTUL+Fh/jVtksiaeN0lFZe+2PgxXELsmqcjWACkwSRWW7nejpD5e3cZdL8zjs3d3/J67i82it/c6lc2FQSUDahOs7WUN4zfPz+WM21/mn7MWAYTFHjO5fiIwXJRSK5RStymlSk9rPb1CqbDaY3bZPHw9fvMBPPil/fj2UTsUHHPtqbux68iB4XubqLe+cc0v1ry0hRUYFRLnFqzKF28stuBYofXie8s46zevcOlfXufmp7UGIgKrWlLc8+I8QM/o3bLxNvgrWULzcVndmuZr92tn/hSzcuJbH6/pMPDNWarXa//Cva+hVH49dzt42VmudXq7lYG/9IfXOPlXL7LfNU8z9rJH+fc7S/jyH//D/dPm8437Z4ZtLFvXzv7XPM3sxaVnxzPnr2LH7z/OY298TF0iP6u31MRj4fZ3ylyjGt74aDXPz15Wcl82pwhEwnXL3T701Om9sjlV9rO7AqPYV2UFxpE3PBvWYutNc2A6q0jEC8On7c+3qTbOmtbe1TDe+GgNAAtXtSGi72+UBTyL6VoasqdPKGWS+uVZE3nnx0eH7yduNTh0JG8zrIHaRIzT9xrNX7+0X3jc0btszg9O3Lnb/Ti7yNneXVY7Pxpb1mTzAdr3UskfctxNz5fdl80pTvzl85x1xyvhtj++8iEAi9e0s89PnuK9pbo4YywmBaHEUsIkZbH+j7cXrWHKu0t5ea42Na1sSfP2ojUcc+NzfOOBGQA8++5Srnp4VsHnW96cCmfwoYYRKzRJrWnNMP2Dlfzp1Q87tH+Bo+VM/yBv5npi1mI+WtXKnc+/3+EcgCffXAxoc5MdPJNFM32rYfzgkTcLzn3mnSWhc3b+ihbe+nhNyTYAjr/5eT5z5ysl92WVNknZ+kZuH3RYbfnv+vE3FvHh8o7VnS3H3vQcR9zwbMl9BT4MR2uMOzN/oOy9K4VSigk/eKLkd2R56D8fkTJRUo21HX1kA+oSvWKSmrVwNdPmrWBNWzoMmxbR5jeR6FdSdPECox9SKqw2iEkHE4rlyW8czBtXHQXoH4k9TkQ4dc+SCfZlOXsfnYPxtcPHcfXJu/LcdyaHjvW/fHFfnvnWIQxvqhzEf+rEUaEGAaUrwtr93XVGfvfB1/nvgtVl97uDU/HttH6TmhJx+e2ZHL9/aR5H/+I5rnvinYJ9R//iOQAee30Rz89exrm/fZW7X5xXsG77uXe+yvumirDVMGyMfpMRGLMWrg4/QyVWtqS58J5p3DblPRaZ1RfvmzqfRavbGHvZoxxz43N8+raXAJi/Mj/YrjBmvwIfRjwoMNdY3vhoNeffNZWdr/wnqUyOA6/9N8fc+FzFfoEOQHDJ5RRKGb9BkNdmrG+hxkSkHX79FI658bnQNAnahPeFe6dz5h0vd2gnnc3xxkerw2xuSyqTY/oHK/n9yx/QksqG7dQ6GkaiaDniJ4xQ/Xh1G3OWrA373VJkFk1ncyxbl2J1a5rLH3qD5evauXXKewXZ+Zlsjq/dP8N8RmGwE4hiBUZ9ImDu0mbeMxpodznupuf51K0vsdtVT4S/JaUI73GUYdrFVJW45+lb7PjWSfRqiDZhlT64sSbOnKuPYbvv/aOqa33+oG252onKGj2knue+M5mZC1axx1baZ9y5TvoAAB03SURBVPKvrx/Mibc8Hyb7nb/fWO425h+AT+6xJZcdM569rv5X2XYG1fddWeZiE19xxVyX/a55OhxwP6gw4y03y37z4zXc85IO07WC25oLrIZRlwgKCkhW4l9vLeZfby0u2Gbt11YT+Hh1K8+8kxda+c9XGCXl+pKuf/JdvnHE9gUO4It+Py18PW3eCiaMHlQ2efOmp2azxcBazjD5RU+9vcS0rfc31eq16a1QtgEAc5bowfPhmQs5b7+xAKGpaG3RbPzV91dwuhGIlqsensXwphoefG1BqEFCXiuvdYSkgrL9f+adpSSDgIv/+Bqvf7Sarxy6Hd88Upt4v/LH//C4ucfZnGLPH+vn+LnZS3lhznLe+uHRBb/NRBBjYF0CET2Q2302pPew66awy8gBvPHRGg4dvxm/PX+vkn0qRbEG/uJ7ywEd3GC/z3gs1mcmKS8wNgHiZX40pY/tKHhiMQmFBehs9H989UBOv+0l3vhoTQfTTk08KDBLlMKahaJc3MZSHERg39aUmHGvaO5SFf+S2IHczuittmMFRk0XBEYpiicS+/706YL39vO6GoZbah30gD96cB3fdpz5rtD51K0v8fmDt2HR6jbO2Gsr9t12aId+fPfB19lmWAMvzFnGTcZ/FBjz24C6BEvWtodC2fUhAdzx3NxQYLy/TAuMLYtCxJ96u1BQAgUTExd31T3LiuYU249oLHn8fz5cxY8ffSt8f/PTc7jksHHEREJhUcwLc/RgvbY9zSqnCGgi0GucWNdIeP+d3531PTz9dj4Srz2T5bYpc7nooG06ZKFPm7eCS//yX7YZXrr/a9szDG7QWk0yLn2W6e1NUv2Q9bmoR7kZWTH1yTjH7GKWoi0awGy5gm2GNXQ47/lLJ/P41w4M31cSGO6PfbdRA8se1xnFAiOo4MPoTayGYQVGGCXVw2ym7/9tVsX9dt34YpPUoPokIwbkzYnfrhD5BXDblLn8bcZCzrzjZcZ977ECM5Jl6rwVBaX17Ux/QG1haO+IAYUBGAtWtnLvyx/wytzl/O4lfb5S+coAf3jlA26bUn1dMxs8UecMvJ/5xJiyz/Ojr3/cYdsHy5v55C0vdNrW+0ubOdLxpxQHT9g8kM6CKu56YR7XP/ku4694PDRjWn706Fu8t7Q59E0Vk8rk8iapWKxkmHkUeA1jE+H60ycURFD982sHlTR5Fa8pXokTJ2zJrc+8x+mTRtPcnuHel7WDsMaUxHj6W4ew0/cfZ/L4zcJzijPercD44Uk7c8ROIwpmy3WJgCENSVY0p7jxjD3Y2gigafNWkFNw9aNvMrOCH8NSziQVRW0hF6vBpMzs12oYUeVgWOxMt7YoSgrglImj+PUz73X5mums4pRfv9hh+8+fKPRlWP/bkIaagna3GNgxwfTyh94oeP/O4rXs/7Onue0ze/K9v77R4fhK2EHa/U4H1iWqngABnHH7Kyxb197pcYvXFh5jNYnxmzfx9qK1ocCu9Ft68LUF3D81vzr1bVPe45pTd2Pm/FVsP6KJmVWU/inwYXiTlKc3OWViofN7h81LL+TUFfPV6CH1vP4D7WzfbdQgQAsMN8rrzR8eXerUEKtKH73L5h1WG0wE+ZmTDUkFmDR2CAAPXbw/b328lmNvquyktd2xNuYw27zCDPCqE3bi7//9mGkfrKx47UpYDcMO4PYz9JXA2HazvIZm+9KTkNLiWXApsiYfwOa92Hu8+cDqqh2uaklz8R9f63LfmksIDKheYwaqEhZQWDcN8mHTZ++zVbjEQKW2/zbjI77xwMyCbfdNnc/8lS2h2asabD5WIoiR7o95GJ6Nn0pZ5pU4sWD98uqv4RZRG9pYww2fnsANn54AaJV+qMkId0t7hK2IsNOWA8L3bpmUmVceWXAc5E1RpWz8FmuyOWzHEfzpok9U7PvJe4ysuN/6MMYMqy9ot48CWsJseshrO1Gtw2GxpdOHGPu69Yk11FQ/N122rut+pG2Ga+3T9WFA95/nrmAFg33OrEwu1/ZX75tRcntXhAXAwdsPD9vxeRie9UJXZmQutYmAnc3g3ZX1PP5w4T6cu++Y0OZ98h6j2Htr7WA9ZeIofvfZvbn65F06OE1L4c6oS2W5x4oER22JMOU9xwxm3jXHMXpIfcEaEqUY0Ilj35575Qk7M7QhyXij1UWvYeSvf8e5kzh2183Dmb41dQ9tSJY6tcfYgcuGf1pHdk8WBquGy4/bCSj0YQB9kgEdLowVKxQYUXPETiPC9jM5VfC9R0WfCAwRGS8iL4lIu4h8y9k+WkT+LSJvicgsEfmqs2+IiDwpIrPN//J1MDy9Rk8Wb7rtnD355hHbM3Zo9ZV5dxs1iB+etEtBYt3IQXW895Nj+dSeoxg9pJ6z9xlT1bVuPmOPivttE3aF2s/uv3WHYyoJiGKaasuXXjl+ty3Cz7TX2CFMv+KIsGikzfI+fVLXcmSqxR02jthpBL86e8+wL9YkdcC4YT1uZ8zQem79zMSCbXaAvvDArfn8Qdtw2p467LbaAIMfndS9RFNriirONdl2eCPfPmqHDv0EOK2LOUrlCBfGshqG2R71+G0DCayvJMr12i19pWGsAC4Bfl60PQN8Uym1I/AJ4GIR2cnsuwx4Sik1DngKX7+q3zNqcD1fOWxcweDfXbojuKxNtxyhhmGuPbA+wU1naiFjNZgz9u48u91qUpUGwV+e1XGAsliz0FcP3z7MR+mMM0v06zOf6HomvhUYnYU9V0MiiHUQmnbQGjW4nu8eu2PJrPNKTKxQH60airVGEeHiydtx9C5bsFlRwunOjjmzJ9hs7ijWSa8G63fsC22qTwSGUmqJUmoqkC7a/rFS6jXzei3wFmANwycB95jX9wCf7Iu+9gcajXO0OBTR0zkPf3l/7r6gdGKUFRRumK2dFY4aXMe8a47jE9t0zDcAmDB6EGOM5nTjGbvz2hVHVJ1YWYzVMJJBrOpZ6GXHjO+w7fjdtN/owgMKNaVK17QRaweOG15dwxUIzFrdLuXCO0sJ1798cT+uP31CwbZB9Unu68R3VMkvUWnQtnkflsG9YJZrrIlzyPb6ntqmrWmor8Lj7f3YmDSMThGRscAegE2hHaGU+hi0YAE2K3PeRSIyTUSmLV26tNQhGxwTtxrMdadN6FEdqK5y3G5b9FlbUbLbqEEcskPJRyVvknJG+monhZccuh13nrcXF+w/lm2GNYZO3VI8eskBFa9lB/RkECsbtVTsUG9IdvQB7DJyIPOuOY7Lj9+pYLuqMFRN3mEzZl99DPtsPaRiH8ufnxc0QUw6aILlSlSU0jD2HDOYUyaOKnDONybjZYW25fMHb8Owxhre/lHlCLxivnTItky//PDw/eTxm5XU3MpRaiJy4xm7h5pt8b0oJ7hPmVg5WKKrWB9KX+Ri9AuBISKN6HXCv6aUKl/5rARKqduVUpOUUpOGD+/5rKk/YGtAdSWypKfcfMYezLn6mD5rb31QbJKC6s0IMRG226yRK0/YudNzdt6yuiTDRFw6TEPt6opu6fr3fnJsyXBn19+y99ghXHmCFhyf7CR6KxHESkadleLqk3fh95/bG4Az9hpdsGxuEJMOPoNyRfCKfUOueeiFyyaHr+trOneOnz5pNNMuP7xsHs1NZ+7BY5cc2GG7iIRRd6CF0xlFSyc/+KX9+Prh25e8bimNv+BZqlLlLJXQainuTzXkS7hvwBqGiFwsIjPM35YVjkughcUflFIPOrsWi8gW5pgtgNKr23h6hZizjOrGSkwK/+vXnfzInRyOahhcpU8CKmsYCjjIhE2W8+e4iWEPfGFfLth/a16/6kguPaqj+apD2/EY15yyK89+e3LF487eZwwHjhvO3J8cy09P2bVgXywm7DCiqcBcNmlsaR9EsV/r8a8dFL52I6iqidLr7Ds7ccKWBeHWxXz7qB1oSAYlBf/ErQaz4xalc5SsltTkTOTc/saKwmrLMXGr0vdo8g7DOyx6dtUJO5U81iUeOr03YA1DKXWLUmp387ew1DGin6I7gbeUUtcX7X4YOM+8Pg/4W1R99WzYzLzySP5zxRGdHlfSh1HlL6Ca2eN/rzqS5y+tfqmYICYdZq1uK/dcsBdzf3Js+H5QfYJJYwZz+XE7MqQhWTK4oKk2UbXWdMbeW7HV0HquO21Cp8faEvGu+Shutn3O8aGcvEd1kUfFJr0jTYhoNYwa3LNliS+evB2zTEJpfQlTn31Oxm/exP2OP2VYQw3Xnz6Bp791SBgi7Qpz+yxVMgmC1kDnXXMc3ziiUJO564K9C+pp3XLWxA6VEWzuhYudOPRFxdq+CqvdXEQWAN8ALheRBSIyANgfOAc41NFG7C/kGuAIEZkNHGHeezwdGFiXqMqBKSVMUtVGdFUjMAbUJqoyI1ontYhw74X7dHD8un1zB/8Z3z+SP39xPy48cBteq0JAVstJuxcaAM7ddwxXHL8TPywR4vrFQ7blUyYc1QYM9EZy3K8/s2fBei/lOG3PUQXf2aVHj+e2c/bsdrvjRjSFkXLFbDmojl2dGmYS07lBw5tqwj64Wl7xM1JcyPP7x+/E1O8dHvo8yi2h/I0jticeE47bbQuComvc89m9Oxw/oDbB1sMaelyjrBr6xEiulFqEXt61mOcpkxaslFoOHBZlvzybFqV+UMXlSLpy7ql7juKBaQv4cEX5MuiluPz4nUJH9ZaD6jhl4ii+8cDMcNYK9F32Fx1NXofsMJxDx5ee8SeCGKfsMZI/T18QnmcHz2qSKyv1IYh1nO3/6xsHc/j1U8qe98VDtu12m5YTJ2xJaypTUJHZ4goB9y7Z17Y6r35deB/P328sS9a08aXJ2/HwjIWcv9/YqrS/Sw4bFwoTVxhbQf3rsycWJKketuMIDtuxeg2tJ/haUp6Nlue+M7mgPpAVDq7foFpHZSlNZIuBdTz7ncmMvezRHvYU/vWNg9hsQC3XPv52j6/VVYo/W2f3xJo+3AHy9nP2ZMcteievwWW7zQrLe/dCik9JPr1X6Wgpt70C4WFexks4vfO1w+L84KRdAPifg7bpVr/sPd5t1ECuPXU3AI7Zdf1FNHqB4dloGT2kviCqp7jWD+SzvjsjanV/u81KO1r7ilMmjuTB1z4COk+atKVN3NnykTtvXu7wbvHstydX/d1ESWEIdnnhAPn70Zu6YdzchHhM1ltioEs/+Eo8nr7Bhqq64Zj2h9+ZL6Ovf6x9vSbK9afvzlZGuHZmphtg6nRVCg8txavfq97CvNXQ+tDh69566UJhy96glFbhvnYd3NWaN7vWvm2nf+AFhmeT4dpP7cYjXz6gYE3yqk1SUXWqH9KZcNxzzGDuOHcS3z228/Bdl82aavny5O26nCQ648ojS2a6R0WB1lBCSED+eSh1bFeKANoEyvP2LV0vLSoTXHfxJinPJkNtIiiIeoHqw2oraSA/OHFnmlOZnnQt304/EE3V1PE6ogthsC7fOmqHLp8zoDYRBgRsPbxrWk132MyUuN9piwEF33ushIrhiobumKTu//y+nRyx/p+H/9/e3QfbVdVnHP8+JiTh5ZJoEkjihUYmgYBOvKE3AYxlYloz4EuAmbTA+AJKB6elAhXQUixFx9FRGaEqw8AEkE5RAyloynSElJfBQYa8QAKhCSXaKLdgc5U3g5Tw8usfe53ck+M592xy73m5ez+fmTN377X32Wetc/c5v7PW2nutag4YVmrNmqIqW4f7Dq0do2gkKjeczZ7a+i/GWpXmlby1rnZactQhfP8vj+O4JsOGjIb5vVO446/ft9cMlbD3+3Lye2aw+ekXmFF1H824bms/agEHDCu1/JfVtudL9IyFh9F32JSWXHGU10iGuG+l980Z+ZDsedW/xHZo+TMnHsGZiw7fa96VVp4jbbzKeljuw7BSy/shb1fAkNTRYAGt6bwtAu3VAa4/mKSrFRWMbvtXOGBYqeX9QHbbB7eVuuFy1rFoaMa9LqkOtIBPDSu1vIGgG9v1W6Vbm6S63dvqdISPVGWsqxldMjeO+zCs1PL+GCzTr243Se2bVgTaeTMO5urT+1h6dP05XtrNAcMshzLVMLrhjuKxqFXnSLP5TdqpRL+bzPZdGb5DK7Ut1zD2zZ7hzYvbheGAYQbNb4/KOwx6EZSpNjWayvC+OWCY5VCGL4OKEhV1VA11ehe3iuGAYZZDGZqkbGTyTtE6ljlgmOVQphqG7Zs9I9g6YIyMpHmSHpL0qqSL62wfJ+lRSXdWpb1L0sOSnpK0SlLzOTjNWsTxwqx9NYzngPOBKxtsvwDYWpP2deCqiJgLPA+c07rsWVnNOeQg5s3o4Yrlfzh/NQwFijLUMCaOd4ODDa8tZ0hE7IyI9cBrtdsk9QIfBlZWpQlYCqxOSTcDp7Yhq1Yyk/Ybx08uPJFFaV6CRsoQMG44ayGfXTqH3rfv3+msjElDTVLFbZPqhp8UVwOfB96sSpsKvBARlUkGBoC6d69IOlfSBkkbBgcHW5tTK60ydHrPnnYgFy07qlSXEI+mMrxvHQ0Ykj4C7IyIjbWb6uxeN2xHxPUR0R8R/dOnTx/1PJpBOb4MbHQUt37RwoAh6TxJm9JjVoPdFgPLJe0AfggslfQvwG+AKZIqQ5f0As+0Kq9mzTheWDOH9kxkfu9kvrFifqez0jItCxgRcU1E9KVH3S/7iLg0InojYjZwBnBvRHw8skbA+4AVadezgB+3Kq9mzZShD8NGZvy4t7Hmb97Pn8wtbktHuy6rnSFpAPgc8EVJA5KazRLzBeBzkraT9Wnc0Op8mtWqzLFdhj4Ms2baMlptRPyarFlpuH3uB+6vWv8FsKilGTPLyX0YZt1xlZRZ13MNw8wBwywX92GYOWCY5eJ4YeaAYWZmOTlgmA3jyBk9gJukzMBzepsN6+ZPLeSJZ15i0n7jOp0Vs45zDcNsGFMOmMDiOdM6nQ2zruCAYWZmuThgmJlZLg4YZmaWiwOGmZnl4oBhZma5OGCYmVkuDhhmZpaLb9wzMxvGjWf38+prb3Y6G13BAcPMbBhL5x3a6Sx0DTdJmZlZLu2aonWepIckvSrp4pptUyStlrRN0lZJJ6T0d0haK+mp9Pft7cirmZnV164axnPA+cCVdbb9E/CTiJgHvBfYmtL/DrgnIuYC96R1MzPrkLYEjIjYGRHrgdeq0yUdDJwI3JD22x0RL6TNpwA3p+WbgVPbkVczM6uv030YRwCDwE2SHpW0UtKBaduhEfEsQPp7SL0DSDpX0gZJGwYHB9uTazOzEup0wBgPHAtcGxELgJd5i01PEXF9RPRHRP/06dNbkUczM6OFAUPSeZI2pcesBrsNAAMR8XBaX00WQAD+V9LMdKyZwM5W5dXMzJprWcCIiGsioi89nmmwz6+BpyUdlZL+FPjPtLwGOCstnwX8uFV5NTOz5hQRrX8RaQawATgYeBPYBRwTES9J6gNWAhOAXwCfiojnJU0FbgUOB34F/HlEPNfkdQaBX+5jNqcBv9nH545VLnM5uMzFN9Ly/lFENG3Tb0vAGAskbYiI/k7no51c5nJwmYuvXeXtdKe3mZmNEQ4YZmaWiwPGkOs7nYEOcJnLwWUuvraU130YZmaWi2sYZmaWiwOGmZnl4oABSDpJ0pOStksqzKi4km6UtFPSlqq0usPGK/Pt9B48JunYxkfuTpIOk3RfGib/CUkXpPQil3mSpHWSNqcyfymlv0vSw6nMqyRNSOkT0/r2tH12J/M/EpLGpTHo7kzrhS6zpB2SHk+jZ2xIaW09t0sfMCSNA64BTgaOAc6UdExnczVqvgecVJPWaNj4k4G56XEucG2b8jiaXgcuioijgeOB89L/sshlfhVYGhHvBfqAkyQdD3wduCqV+XngnLT/OcDzETEHuCrtN1ZdwNB0CFCOMn8gjZ5Rueeived2RJT6AZwA3FW1filwaafzNYrlmw1sqVp/EpiZlmcCT6bl64Az6+03Vh9kw8l8sCxlBg4AHgGOI7vrd3xK33OOA3cBJ6Tl8Wk/dTrv+1DWXrIvyKXAnYBKUOYdwLSatLae26WvYQDvBJ6uWh9IaUXVaNj4Qr0PqdlhAfAwBS9zaprZRDZA51rg58ALEfF62qW6XHvKnLa/CExtb45HxdXA58mGGoKsDEUvcwB3S9oo6dyU1tZze/xID1AAqpNWxmuNC/M+SDoI+FfgwsjGK2u4a520MVfmiHgD6JM0BbgDOLrebunvmC+zpI8AOyNio6QlleQ6uxamzMniiHhG0iHAWknbhtm3JWV2DSOLvIdVrfcCdUfXLYhGw8YX4n2QtB9ZsLglIm5PyYUuc0Vks1XeT9Z/M0VS5Qdhdbn2lDltn0w2hfJYshhYLmkH8EOyZqmrKXaZiTTqd0TsJPthsIg2n9sOGLAemJuusJgAnEE2tHpRNRo2fg3wyXR1xfHAi5Wq7lihrCpxA7A1Ir5VtanIZZ6eahZI2h/4M7KO4PuAFWm32jJX3osVwL2RGrnHioi4NCJ6I2I22ef13oj4GAUus6QDJfVUloFlwBbafW53uiOnGx7Ah4D/Imv7vazT+RnFcv0AeJZsLvUBsqtFppJ1Fj6V/r4j7Suyq8V+DjwO9Hc6//tQ3veTVbsfAzalx4cKXub5wKOpzFuAy1P6EcA6YDtwGzAxpU9K69vT9iM6XYYRln8JcGfRy5zKtjk9nqh8T7X73PbQIGZmloubpMzMLBcHDDMzy8UBw8zMcnHAMDOzXBwwzMwsFwcMG/MkvZFG8Kw8Znc6T6NJ0gJJK6vWT0oj1G5L5V0l6fC07XuSVtQ8f9cwx54g6YGqG97MGvJJYkXwSkT0NdooaXwMjTE0Fv098BUASe8BvgMsj4itKW052SCTv3qrB46I3ZLuAU4HbhmtDFsxuYZhhSTpbEm3Sfo34O6Udomk9Wl+gC9V7XuZsvlQ/kPSDyRdnNLvl9SflqeloSgqg/19s+pYn0npS9JzVqdf/7eku8+RtFDSz5TNW7FOUo+kn0rqq8rHg5Lm15SjB5gfEZtT0heAr1aCBUBErImIB3K8J1+uqoX9j6Sb0qYfAR97S2+wlZJrGFYE+6fRWgH+OyJOS8snkH3ZPidpGdncAIvI7oJdI+lE4GWy4SUWkH0eHgE2Nnm9c8iGWlgoaSLwoKS707YFwLvJxu15EFgsaR2wCjg9ItZLOhh4BVgJnA1cKOlIsjuTH6t5rX6yO7gr3g1c2SR/35T0xdrEiLgcuFzSZOCnwHfTpi3AwibHNHPAsEJo1CS1NiIqg8wtS49H0/pBZAGkB7gjIn4PICnPOGLLgPlVfQWT07F2A+siYiAdaxNZU9GLwLMRsR4gIl5K228D/kHSJcCnySa8qjUTGKyXCUmVYSEOAK6PiEoguSQiVlftt6tqWWRNT1dFxMaUnzck7ZbUExG/y1F+KykHDCuyl6uWBXwtIq6r3kHShTQe9vl1hpptJ9Uc67MRcVfNsZaQzYBX8QbZZ0z1XiMifi9pLXAK8BdktYlar9S89hPAscDmiPgt2bDmF5MFwDyuAAYi4qaa9InA/+U8hpWU+zCsLO4CPq1srgwkvVPZvAIPAKdJ2j/1F3y06jk7gD9OyytqjvVXyoZSR9KRaQTRRrYBsyQtTPv3VF2VtBL4NrC+qjZUbSswp2r9G8BlkqrnvDhgmNfeQ9k8Eh8Ezq9JnwoMRsRreY5j5eUahpVCRNydvmQfSv3Qu4CPR8QjklaRjWz7S7K2/YorgVslfQK4typ9JVlT0yOpiWcQOHWY194t6XTgO2kI8lfIhiHfFdkkQC8Btb/4K8/dJmlypbkoIh6XdAHwzynA/Zbs6qh/zPE2XATMAtal92BN6tf4APDvOZ5vJefRas2qSLqC7Iu8WcfyaL3eLLJJj+ZFxJsN9vlb4HcRsbLe9lHIw+1k89g/2YrjW3G4ScqsQyR9kmzO8csaBYvkWvbuGxnNPEwAfuRgYXm4hmFmZrm4hmFmZrk4YJiZWS4OGGZmlosDhpmZ5eKAYWZmufw/JoqTC6BARuAAAAAASUVORK5CYII=", "text/plain": [ "" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "meas = Measurement(exp=experiment)\n", "meas.register_parameter(math_channel.trace)\n", "\n", "with meas.run() as datasaver:\n", " datasaver.add_result(\n", " (math_channel.trace_axis, math_channel.trace_axis()),\n", " (math_channel.trace, math_channel.trace()),\n", " )\n", "\n", " dataid = datasaver.run_id\n", "\n", "plot_by_id(dataid)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to fully support math operations and spectral analysis, we need code to add a math function through the QCoDeS driver, rather than manually. Additionally, we need to be able to adjust the frequency ranges and possibly other relevant parameters.\n", "\n", "As always, contributions are more then welcome! :-)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "qcodespip310", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8 | packaged by conda-forge | (main, Nov 24 2022, 14:07:00) [MSC v.1916 64 bit (AMD64)]" }, "nbsphinx": { "execute": "never" }, "vscode": { "interpreter": { "hash": "877bdf401a755bd1ca03bfff5025f0aef86a1f0055843840ae8b9a03952abbf7" } } }, "nbformat": 4, "nbformat_minor": 2 }