

1

#### 人工智能系统 System for Al

#### 强化学习系统 System for Reinforcement Learning

薛卉

微软亚洲研究院



# 真实世界的问题:在动态变化的状况下学习如何做出正确的序列选择





路径规划



连大键 气质淑女

电商推荐

自动驾驶

















- Each time step t
  - Agent takes an **action**  $a_t$
  - World updates given **action** at , emits **observation**  $o_t$  and **reward**  $r_t$
  - Agent receives **observation**  $o_t$  and **reward**  $r_t$
- Explore the world (**explore**)
- Use experience to guide future decisions (*exploit*)



强化学习



- **History**  $h_t = (a_1, o_1, r_1, \dots, a_t, o_t, r_t)$
- Agent chooses action based on history
- State is information assumed to determine what happens next
  - Function of history  $s_t = (h_t)$
  - State  $s_t$  is **Markov** if and only if  $p(s_{t+1} | s_t, a_t) = p(s_{t+1} | h_t, a_t)$





- Goal select actions to maximize total expected future reward
  - balancing immediate & long-term rewards
- **Policy**  $\pi$  determines how the agent chooses actions
  - Deterministic policy

$$\pi(s) = a$$

• Stochastic policy

$$\pi(a|s) = \Pr(a_t = a|s_t = s)$$

• Value function expected discounted sum of future rewards under a policy  $\pi$ 

$$V^{\pi}(s_t = s) = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s]$$



# 同步的单机DQN的例子





# 同步的单机DQN的例子

#### class DQNSolver:

|                                                                                                                      | <pre>definit(self, observation_space, action_space):</pre>                                                                             |                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                      | <pre>self.exploration_rate = EXPLORATION_MAX</pre>                                                                                     |                                                                                                                |
| def cartnele(): initialize env                                                                                       |                                                                                                                                        | j                                                                                                              |
| env = svm make(ENV_NAME)                                                                                             | self.action_space = action_space                                                                                                       |                                                                                                                |
|                                                                                                                      | self.memory = deque(maxlen=MEMORY_SIZE)                                                                                                | icy model                                                                                                      |
| observation space - env observation space share[0]                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                  | <b>~</b> .                                                                                                     |
| action charge = only action charge n                                                                                 | <pre>self.model = Sequential()</pre>                                                                                                   |                                                                                                                |
|                                                                                                                      | <pre>self.model.add(Dense(24, input_shape=(observation_space,), activation="relu"</pre>                                                | ))                                                                                                             |
| run = 0                                                                                                              | self.model.add(Dense(24, activation="relu"))                                                                                           |                                                                                                                |
| run = 0                                                                                                              | <pre>self.model.add(Dense(self.action_space, activation="linear")) </pre>                                                              |                                                                                                                |
|                                                                                                                      | Self.model.complet(loss= mse, optimizer=Adam(lf=LEARNING_RATE))                                                                        | Ĵ.                                                                                                             |
| run += 1 Iraining loop                                                                                               | def remember(self state action reward next state done).                                                                                |                                                                                                                |
| <pre>state = env.reset() </pre>                                                                                      | self.memory.append((state, action, reward, next state, done))                                                                          | icy inforence                                                                                                  |
| <pre>state = np.resnape(state, [1, observation_space])</pre>                                                         |                                                                                                                                        |                                                                                                                |
| step = 0                                                                                                             | <pre>def act(self, state):</pre>                                                                                                       |                                                                                                                |
| while True:                                                                                                          | <pre>if np.random.rand() &lt; self.exploration_rate:</pre>                                                                             |                                                                                                                |
| step += 1 ROIIOUT data                                                                                               | <pre>return random.randrange(self.action_space)</pre>                                                                                  |                                                                                                                |
| #env.render()                                                                                                        | <pre>q_values = self.model.predict(state)</pre>                                                                                        |                                                                                                                |
| action = dqn_solver.act(state)                                                                                       | return np.argmax(q_values[0])                                                                                                          | licy update                                                                                                    |
| <pre>state_next, reward, terminal, info = env.step(action)</pre>                                                     |                                                                                                                                        | ·-·、                                                                                                           |
| reward = reward if not terminal else -reward                                                                         | def experience_replay(self):                                                                                                           |                                                                                                                |
| <pre>state_next = np.reshape(state_next, [1, observation_space])</pre>                                               | <pre>if len(self.memory) &lt; BATCH_SIZE:</pre>                                                                                        | N. Constraints                                                                                                 |
| <pre>dqn_solver.remember(state, action, reward, state_next, terminal)</pre>                                          | return                                                                                                                                 |                                                                                                                |
| <pre>state = state_next</pre>                                                                                        | <pre>batch = random.sample(self.memory, BATCH_SIZE)</pre>                                                                              |                                                                                                                |
| if terminal:                                                                                                         | for state, action, reward, state_next, terminal in batch:                                                                              |                                                                                                                |
| <pre>print "Run: " + str(run) + ", exploration: " + str(dqn_solver.exploration_rate) + ", score: " + str(step)</pre> | q_update = reward                                                                                                                      |                                                                                                                |
| <pre>score_logger.add_score(step, run)</pre>                                                                         | if not terminal:                                                                                                                       |                                                                                                                |
| break                                                                                                                | <pre>q_update = (reward + GAMMA * np.amax(self.model.predict(state_next)[</pre>                                                        | 0]))                                                                                                           |
| <pre>dqn_solver.experience_replay()</pre>                                                                            | <pre>q_values = self.model.predict(state) </pre>                                                                                       |                                                                                                                |
|                                                                                                                      | $q_values[0][action] = q_update$                                                                                                       |                                                                                                                |
| Vpdate policy                                                                                                        | self evolution rate *- EVDLOPATION DECAY                                                                                               |                                                                                                                |
|                                                                                                                      | <pre>&gt; Self.exploration_rdte = cartonation_becat &gt; &gt; self exploration_rate = may(EYDLORATION_MIN_self exploration_rate)</pre> | le de la companya de |
|                                                                                                                      | Sett.exploration_rate = max(corcoration_rate, sett.exploration_rate)                                                                   |                                                                                                                |



## 强化学习和传统的机器学习有什么差别?

#### 强化学习系统面临的挑战和机器学习系统相比,有什么 不同?

# 大量难以复用的强化 学习代码库

| Repositories     | 22K   |
|------------------|-------|
| Code             | 586K+ |
| Commits          | 22K   |
| lssues           | 6K    |
| Discussions Beta | 0     |
| Packages         | 0     |
| Marketplace      | 0     |
| Topics           | 62    |
| Wikis            | 1K    |
| Users            | 1K    |
|                  |       |
|                  |       |

| anguages         |        |  |  |  |  |  |  |
|------------------|--------|--|--|--|--|--|--|
| Python           | 10,829 |  |  |  |  |  |  |
| Jupyter Notebook | 5,492  |  |  |  |  |  |  |
| C++              | 522    |  |  |  |  |  |  |
| HTML             | 513    |  |  |  |  |  |  |
| Java             | 455    |  |  |  |  |  |  |
| MATLAB           | 282    |  |  |  |  |  |  |
| JavaScript       | 262    |  |  |  |  |  |  |
| C#               | 237    |  |  |  |  |  |  |
| ASP              | 203    |  |  |  |  |  |  |
| TeX              | 171    |  |  |  |  |  |  |
|                  |        |  |  |  |  |  |  |

|                                                                                                                                                                   | Sort. Dest mate                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 💂 dennybritz/ <b>reinforcement-learning</b>                                                                                                                       |                                            |
| Implementation of <b>Reinforcement Learning</b> Algorithms. Pyth<br>Solutions to accom                                                                            | 10n, OpenAl Gym, Tensorflow. Exercises and |
| 🟠 14.6k 🛛 🗧 Jupyter Notebook 🛛 MIT license 🖉 Updated on May 1                                                                                                     |                                            |
|                                                                                                                                                                   | uction                                     |
| ShangtongZhang/reinforcement-learning-an-introduce<br>Python Implementation of Reinforcement Learning: An Intro                                                   | oduction                                   |
| ShangtongZhang/reinforcement-learning-an-introduce<br>Python Implementation of Reinforcement Learning: An Intro<br>reinforcement-learning artificial-intelligence | oduction                                   |

| reinfo        | orcement-learnir | ng tu     | torial | machine-le | arning   | q-learning      | dqn      | policy-grad  | ient sarsa     |               |       |
|---------------|------------------|-----------|--------|------------|----------|-----------------|----------|--------------|----------------|---------------|-------|
| tenso         | rflow-tutorials  | a3c       | deep-  | q-network  | ddpg     | actor-critic    | asyn     | chronous-adv | antage-actor-o | critic doub   | le-do |
| priori        | tized-replay     | sarsa-lar | mbda   | dueling-do | ın dee   | ep-deterministi | ic-polic | y-gradient   | proximal-polic | cy-optimizati | on    |
| рро           |                  |           |        |            |          |                 |          |              |                |               |       |
| <b>\$</b> 5.3 | k 🔵 Python       | MIT lice  | ense   | Updated 25 | days ago | )               |          |              |                |               |       |
|               |                  |           |        |            |          |                 |          |              |                |               |       |
|               |                  |           |        |            |          |                 |          |              |                |               |       |

# 为什么不能复用这些存在的代码库呢?



#### 算法上微小差别可能会极大地影响结果



Figure 1 tricks in DQN will performs different performance from rainbow paper.

Hessel, Matteo, et al. "Rainbow: Combining improvements in deep reinforcement learning."



#### 算法上微小差别可能会极大地影响结果

——给PPO带来真正的性能上提升以及将policy约束在trust region内的效果,都不是通过PPO论文中提出的对新的policy和原policy的比值进行裁切(clip)带来的,而是通过code-level的一些技巧带来的。



#### 不同的强化学习算法结构差异很大

| Algorithm Family            | Policy Evaluation | Replay Buffer | Gradient-Based Optimizer | Other Distributed Components       |
|-----------------------------|-------------------|---------------|--------------------------|------------------------------------|
| DQNs                        | Х                 | Х             | Х                        |                                    |
| Policy Gradient             | X                 |               | Х                        |                                    |
| Off-policy PG               | Х                 | X             | Х                        |                                    |
| Model-Based/Hybrid          | Х                 |               | Х                        | Model-Based Planning               |
| Multi-Agent                 | Х                 | X             | Х                        |                                    |
| <b>Evolutionary Methods</b> | Х                 |               |                          | Derivative-Free Optimization       |
| AlphaGo                     | Х                 | X             | Х                        | MCTS, Derivative-Free Optimization |



# 强化学习的执行策略多种多样



Liang, Eric, et al. "Ray rllib: A composable and scalable reinforcement learning library."



#### 分布式强化学习算法和分布式架构互相影响





#### 强化学习算法和分布式架构互相影响

?



# 为什么不能复用Github上存在的代码库呢?

- ・ RL算法复现比较困难
  - e.g., trick, random seed, parameters...
- ・ 不同的RL算法结构存在差异
  - e.g., on-policy vs off policy...
- · 分布式RL算法的执行策略多种多样
  - e.g., async vs sync, GPU vs TPU, single node vs cluster
- · 分布式RL算法和架构互相影响和变化
  - e.g., Ape-X vs IMPALA

Github上大部分的Repo都只针对特定的算法和架构模式,难以满足RL通用框架的需求。



- 用户友好且通用的RL算法的抽象
- 支持复现的各种RL算法
- 支持不同的RL执行策略 (e.g., Sync/Async)
- 支持不同的RL分布式架构



#### 强化学习需要实时采集数据





#### 采集数据的效率是收敛的关键





# Apex框架让Actor分布式地rollout data



Figure. Apex architecture, multiply actors to rollout data in their own environment.

Horgan, Dan, et al. "Distributed prioritized experience replay."



#### 强化学习训练需要切换context



Figure. Context switch in Apex architecture



#### 强化学习训练需要切换context



• 优化数据的传输

# 当前的强化学习平台





# 当前强化学习平台的分类

|                 | 通用的RL算法      | 针对Env开发      | 支持分布式        | Star数目 | Repo                                                         |
|-----------------|--------------|--------------|--------------|--------|--------------------------------------------------------------|
| ACME+Rever<br>b | $\checkmark$ | ×            | $\checkmark$ | 2.1k   | https://github.com/deepmind/<br>acme                         |
| ELF             | ×            | $\checkmark$ | $\checkmark$ | 2k     | https://github.com/facebookre<br>search/ELF                  |
| Ray + RLlib     | $\checkmark$ | ×            | $\checkmark$ | 16.4k  | <u>https://github.com/ray-</u><br>project/ray                |
| Gym             | ×            | $\checkmark$ | ×            | 24.5k  | <u>https://github.com/openai/gy</u><br><u>m</u>              |
| Baselines       | $\checkmark$ | ×            | ×            | 11.6k  | https://github.com/openai/bas<br>elines                      |
| TorchBeast      | ×            | ×            | $\checkmark$ | 553    | https://github.com/facebookre<br>search/torchbeast           |
| SeedRL          | ×            | ×            | $\checkmark$ | 617    | <u>https://github.com/google-</u><br><u>research/seed_rl</u> |
| Tianshuo        | $\checkmark$ | ×            | ?            | 3.2k   | <u>https://github.com/thu-</u><br><u>ml/tianshou</u>         |
| Keras-RL        | $\checkmark$ | ×            | ×            | 5.1k   | <u>https://github.com/keras-</u><br><u>rl/keras-rl</u>       |



#### 案例研究: Ray and RLlib

Ray is a fast and simple framework for building and running distributed applications.

•

- Ray provide a task parallel API
- @ray.remote def zeros(shape): return np.zeros(shape) @ray.remote def dot(a, b): return np.dot(a, b) id1 = zeros.remote([5, 5]) id2 = zeros.remote([5, 5]) id3 = dot.remote(id1, id2) result = ray.get(id3)



Ray provide an actor API





# 案例研究: Ray and RLlib

#### Ray is a fast and simple framework for building and running distributed applications.



- App Layer
  - Driver A process executing the user program
  - Worker A stateless process that executes remote functions invoked by a driver
  - Actor A stateful process that executes
- System Layer
  - Distributed object store
    - In-memory distributed storage to store the inputs/outputs, or stateless computation.
    - Implement the object store via shared memory
    - Use Apache Arrow as data formats
  - Distributed scheduler
    - Submitted first to local scheduler
    - Global scheduler considers each node's load and task's constraints to make scheduling decisions
  - Global Control Store(GCS)
    - A key-value store with pub-sub functionality







#### 案例研究: Ray and RLlib

**RLlib** is an open-source library for reinforcement learning that offers both **high scalability** and a **unified API** for a variety of applications.



Github repo: https://github.com/ray-project/ray/tree/master/rllib



# 友好的分布式编程接口

```
if mpi.get rank() <= m:</pre>
    grid = mpi.comm world.split(0)
else:
    eval = mpi.comm world.split(
        mpi.get rank() % n)
if mpi.get rank() == 0:
    grid.scatter(
        generate hyperparams(), root=0)
    print(grid.gather(root=0))
elif 0 < mpi.get rank() <= m:</pre>
    params = grid.scatter(None, root=0)
    eval.bcast(
        generate model(params), root=0)
    results = eval.gather(
         result, root=0)
    grid.gather(results, root=0)
elif mpi.get rank() > m:
    model = eval.bcast(None, root=0)
    result = rollout(model)
    eval.gather(result, root=0)
```

a. Distributed control in MPI

Ray's distributed scheduler is a natural fit for the hierarchical control model, as nested computation can be implemented in Ray with no central task scheduling bottleneck.

```
@ray.remote
def rollout(model):
    # perform a rollout and
    # return the result
```

```
@ray.remote
def evaluate(params):
    model = generate_model(params)
    results = [rollout.remote(model)
        for i in range(n)]
    return results
```

```
param_grid = generate_hyperparams()
print(ray.get([evaluate.remote(p)
    for p in param_grid]))
```

b. Hierarchical control in ray.

#### 基于Ray的简单的异步DQN的例子

| 1  | import ray                                          | 1                            | import ray                                                  | -  |                                            |
|----|-----------------------------------------------------|------------------------------|-------------------------------------------------------------|----|--------------------------------------------|
| 2  | <pre>from collections import deque</pre>            | 2                            | import threading                                            | 1  | Run scrint                                 |
| 3  | import time                                         | <b>Trainer</b> 3             | Actors/Workers                                              | 2  | import time <b>Num Scrept</b>              |
| 4  | import threading                                    | 4                            | from dummy import DQN, Env                                  | 3  | from trainer import Trainer                |
| 5  | Remote decorato                                     | or for <sup>5</sup>          |                                                             | 4  | from worker import Worke                   |
| 6  | from dummy import DON, Repl run in remote           | 6                            | BATCH_SIZE = 10                                             | 5  |                                            |
| 7  |                                                     | 7                            |                                                             | 6  | ray.init()                                 |
| 8  | @ray.remote                                         | 8                            | @ray.remote                                                 | 7  | ~                                          |
| 9  | class Trainer:                                      | 9                            | class Worker:                                               | 8  | worker = Worker.remote()                   |
| 10 | def init (self):                                    | 10                           | <pre>definit(self):     self dag = DON()</pre>              | 9  | <pre>trainer = Trainer.remote()</pre>      |
| 11 | self stens = 0                                      | 12                           | self.env = $Env()$                                          | 10 | <pre>t1 = worker.run.remote(trainer)</pre> |
| 12 | self thread - None                                  | 13                           | <pre>self.s0 = self.env.reset()</pre>                       | 11 | t2 = trainer.run.remote(worker)            |
| 12 | solf dan $= DON()$                                  | 14                           | self.trainer = None                                         | 12 | ray.get([t1, t2])                          |
| 10 | self.huffer _ Derleußuffer()                        | 15                           |                                                             | 13 | time.sleep(100)                            |
| 14 | self.butter = ReplayButter()                        | 16                           | <pre>self.buffer = []</pre>                                 | 14 | ray.shutdown()                             |
| 15 | self.Worker = None                                  | 17                           |                                                             |    | \                                          |
| 16 | <pre>self.checkpoint_interval = 5</pre>             | 18                           | <pre>def _run(self):</pre>                                  |    | . Execute the trainer and                  |
| 17 |                                                     | 19                           | for _ in range(10000):                                      |    | execute the trainer and                    |
| 18 | <pre>def _run(self):</pre>                          | 20                           | a = self.dqn.act(self.s0)                                   |    |                                            |
| 19 | for _ in range(10000):                              | 21                           | <pre>s1, r, done, _ = self.env.step(a)</pre>                |    |                                            |
| 20 | self.steps += 1                                     | 22                           | if done:                                                    |    |                                            |
| 21 | <pre>batch = self.buffer.sample()</pre>             | 23                           | <pre>self.s0 = self.env.reset()</pre>                       |    |                                            |
| 22 | <pre>self.dqn.train(batch)</pre>                    | 25                           | else:                                                       |    |                                            |
| 23 | <pre>if self.steps % self.checkpoint_inte</pre>     | erval: 26                    | self.s0 = s1                                                |    |                                            |
| 24 | <pre>weight = self.dqn.dump_weights()</pre>         | ) 27                         | <pre>self.buffer.append((self.s0, a, r, s1, done))</pre>    |    |                                            |
| 25 | if self.worker is not None:                         | 28                           |                                                             |    |                                            |
| 26 | self.worker.update_weights.r                        | <pre>remote(weight) 29</pre> | <pre>if len(self.buffer) == BATCH_SIZE:</pre>               |    |                                            |
| 27 | \                                                   | 30                           | if self.trainer is not None:                                |    |                                            |
| 28 | <pre>def run(self, worker):</pre>                   | 31                           | <pre>self.trainer.add_transitions.remote(self.buffer)</pre> |    |                                            |
| 29 | self.worker = worker                                | 32                           | self.buffer = []                                            |    |                                            |
| 30 | <pre>self.thread = threading.Thread(target=se</pre> | elf. run)                    | (def num/colf_trainen);                                     |    |                                            |
| 31 | self.thread.start()                                 | - 24                         | celf trainer = trainer                                      |    |                                            |
| 32 |                                                     | 36                           | <pre>self.thread = threading.Thread(target=self. run)</pre> |    |                                            |
| 33 | def add transitions(self, trans):                   | 37                           | self.thread.start()                                         |    |                                            |
| 34 | for row in trans:                                   |                              |                                                             |    |                                            |
| 35 | self huffer annend(row)                             | Start thread for async       | <pre>def update_weights(self, weights):</pre>               |    |                                            |
|    | Serrourierappena(row)                               | training                     | <pre>self.dqn.load_weights(weights)</pre>                   |    |                                            |



# 清晰的模块化的RL接口





# 清晰的模块化的RL接口



The policy optimizer is responsible for the performance-critical tasks of distributed sampling, parameter updates, and managing replay buffers.

grads = [ev.grad(ev.sample()) grads = [ev.grad(ev.sample()) samples = concat([ev.sample() grads = [ev.grad(ev.sample()) for ev in evaluators] for ev in evaluators] for ev in evaluators]) for ev in evaluators] for in range(NUM ASYNC GRADS): avg grad = aggregate(grads) pin in local gpu memory(samples) for in range(NUM ASYNC GRADS): grad, ev, grads = wait(grads) local\_graph.apply(avg\_grad) for in range(NUM SGD EPOCHS): grad, ev, grads = wait(grads) for ps, g in split(grad, ps\_shards): weights = broadcast( local g.apply(local g.grad(samples) local graph.apply(grad) ps.push(g) local graph.weights()) weights = broadcast(local g.weights()) ev.set weights( ev.set\_weights(concat( for ev in evaluators: for ev in evaluators: local graph.get weights()) [ps.pull() for ps in ps\_shards]) ev.set weights(weights) ev.set weights(weights) grads.append(ev.grad(ev.sample())) grads.append(ev.grad(ev.sample())) (a) Allreduce (b) Local Multi-GPU (c) Asynchronous (d) Sharded Param-server

Figure. Pseudocode for four RLlib policy optimizer step methods. Each step() operates over a local policy graph and array of remote evaluator replicas.



# 多种多样的可复现的强化学习算法

- High throughput architectures
  - Distributed Prioritized Experience Replay(Ape-X-DQN, Ape-X-DDPG)
  - Importance Weighted Actor-Learner Architecture(IMPALA)
- Gradient-based
  - Advantage Actor-Critic(A2C, A3C)
  - Deep Deterministic Policy Gradients(DDPG, TD3)
  - Deep Q Networks(DQN, Rainbow)
  - Policy Gradients
  - Proximal Policy Optimization(PPO, APPO)
  - Soft Actor-Critic(SAC)
  - Single player AlphaZero
- Derivative-free
  - Augment Random Search(ARS)
  - Evolution Strategies
- Multi-agent
  - Monotonic Value Function Factorization(QMIX, VDN, IQN)
  - MADDPG



# 快速的序列化和反序列化

Serialization and deserialization are **bottlenecks in parallel and distributed computing**, especially in machine learning applications with large objects and large quantities of data.

- Goals
  - Very efficient with large numerical data (e.g. Numpy arrays and Pandas dataframes)
  - As fast as Pickle for general Python types
  - Compatible with shared memory (allowing multiple processes to use the same data without copying it)
  - **Deserialization** should be extremely fast
  - language independent



# 快速的序列化和反序列化

• Making **deserialization** fast is important.

Microsoft

- An object may be serialized once and then deserialized many times
- A common pattern is for many objects to be serialized in parallel and then aggregated and deserialized one at a time on a single worker making deserialization the bottleneck
- Deserialization is fast and barely visible
  - Using only the schema, can compute the offsets of each value in the data blob without scanning through the data blob (unlike Pickle, this is what enables fast deserialization)
  - Avoid copying or otherwise converting large arrays and other values during deserialization(the savings largely come from the lack of memory movement)

UnionArray





# 如何评价分布式强化学习框架?

- Sampling Efficiency
- Large Scale Test
- Multi-GPU



*Figure*. Policy evaluation throughput scales nearly linearly from 1 to 128 cores.



# 如何评价分布式强化学习框架?

- Sampling Efficiency
- Large Scale Test
- Multi-GPU





# 如何评价分布式强化学习框架?

- Sampling Efficiency
- Large Scale Test
- Multi-GPU

| Policy Optimizer | Gradients computed on | Environment            | SGD throughput                          |
|------------------|-----------------------|------------------------|-----------------------------------------|
| Allreduce-based  | 4 GPUs, Evaluators    | Humanoid-v1<br>Pong-v0 | 330k samples/s<br>23k samples/s         |
|                  | 16 GPUs, Evaluators   | Humanoid-v1<br>Pong-v0 | 440k samples/s<br>100k samples/s        |
| Local Multi-GPU  | 4 GPUs, Driver        | Humanoid-v1<br>Pong-v0 | <b>2.1M samples/s</b> N/A (out of mem.) |
|                  | 16 GPUs, Driver       | Humanoid-v1<br>Pong-v0 | 1.7M samples/s<br>150k samples/s        |



# RLlib**的小总结**

- 优雅而简单的分布式编程语言
- 容错和高并发的分布式框架
- 通用的强化学习接口
- 为python对象优化的高效通信框架

在Rllib还有什么可以 改进的地方?新一代 的强化学习平台是怎 样的?



# 强化学习的其他挑战

- 可复现性 (e.g. SURREAL)
- 可解释性
- 从少量的数据中学习
- 安全限制
- 实时推理

. . .



#### 路漫漫其修远兮, 吾将上下而求索~





- Ray: A Distributed Framework for Emerging AI Applications
- RLlib: Abstractions for Distributed Reinforcement Learning
- DISTRIBUTED PRIORITIZED EXPERIENCE REPLAY
- Rainbow: Combining Improvements in Deep Reinforcement Learning
- SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference
- IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
- Asynchronous Methods for Deep Reinforcement Learning
- SURREAL: Open-Source Reinforcement Learning Framework and Robot Manipulation Benchmark
- Challenges of Real-World Reinforcement Learning
- Apache Arrow <a href="https://arrow.apache.org/">https://arrow.apache.org/</a>
- <u>https://wesmckinney.com/blog/arrow-streaming-columnar/</u>
- Modin(speed up the pandas in ray) <u>https://github.com/modin-project/modin</u>
- <u>https://www.zhihu.com/question/377263715</u>
- <u>https://www.slideshare.net/databricks/enabling-composition-in-distributed-reinforcement-learning-with-ray-rllib-with-eric-liang-and-richard-liaw</u>
- <u>https://github.com/deepmind/reverb</u>



## 支持的复杂的与环境的交互方式



Standard environments (e.g., gym.Env, MultiAgentEnv types) are created and stepped by RLlib rollout workers.

- External environments (ExternalEnv) run in their own thread and pull actions as needed. RLlib still creates one external env class instance per rollout worker.
- B) Applications running outside the Ray cluster entirely can connect to RLlib using PolicyClient, which computes actions remotely over RPC.
- PolicyClient can be configured to perform inference locally using a cached copy of the policy, improving rollout performance.