Accera v1.2 Reference
accera.Array.slice(sliced_dims, sliced_offsets)
Creates a sliced view of reduced rank from an array. The view is created from elements at specified offsets of the sliced dimensions of the original array.
Arguments
argument | description | type/default |
---|---|---|
sliced_dims |
The dimension indices of the original array to slice on. | Tuple[int] |
sliced_offsets |
The offsets of the corresponding dliced dimensions. | Tuple[Scalar] |
Examples
Clear a slice of size 5 from an array of size 5x5 at dimension 0 with offset 2:
import numpy as np
import accera as acc
N = 5
slice_dim = 0
slice_offset = 2
matrix = np.random.rand(N, N)
Arr = Array(role=Role.INPUT, data=matrix)
# Zero out a slice of size [5] such that the resulting array looks like this:
# xxxxx
# xxxxx
# 00000
# xxxxx
# xxxxx
nest = Nest(shape=(N,))
i, = nest.get_indices()
@nest.iteration_logic
def _():
SliceArr = Arr.slice([slice_dim], [slice_offset])
SliceArr[i] = 0.0
schedule = nest.create_schedule()
Last update:
2023-04-17