
Rapid Trajectory with MPC controller
AirSim NeuRIPS final solution

Jiadong Guo Team Chuchichäschtli
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Abstract—The participant 1 chose to use a combination of
optimal control based planning and MPC control to solve the
task 1. With known system dynamics and ground truth states,
optimal control methods are well suited for generating feasible
trajectories. To account for unmodeled disturbances such as drag
and delays, and include input constraints, a MPC tracker is
implemented to facilitate the tracking. Attached log file shows a
racing record of 53.486 seconds for final tier 1.

I. INTRODUCTION

Quadcopter is a well studied research platform for control
problems. In recent years, optical control methods have been
developed to allow rapid and aggressive maneuvers, while
being lightweight enough to run real-time on embedded plat-
forms. Many open-source implementations are available from
previous research. With perception problem out of the way in
Tier1, the participant applied minimum jerk trajectory gener-
ation from Mark Mueller et al. [1] in combination with MPC
control similar to Davide Falanga et al. [2]. Both of which
have open-source implementation available. The participant
also intends to open-source2 the solution post-competition.

II. SYSTEM OVERVIEW

The system consist of a control and a planning module,
running in separate threads. The planning module is executed
whenever the controller needs a new reference trajectory, or
when the state deviate too much from the planned trajectory.
This could happen when drone deviates strongly from orig-
inal orientation, validating several assumptions made in the
simplified planner.

Control inputs are body rates and thrust values. States are
chosen to be position, velocity and orientation as quaternion,
same as in the MPC formulation from Davide Falanga [2]. In
summary, the system can be formulated as:

ṗw = vw

v̇w = g + qWB � T

qWB =
1

2
Λ(ΩB)qWB

p for position, v for velocity, q for quaternion, T for thrust,
Ω for the body rates. Details and the implementation of the
system refer to [2].

1On a side note, the participant is currently open for career opportunities.
2https://github.com/JD-ETH/AirSimNeuRIPS

III. PLANNING

Theoretically, one could also solve the global trajectory
by imposing all goals as constraints, and would probably
yield even better result. However, to maintain flexibility, the
participant chose to use a incremental planner. Given a starting
state and a goal, the planner quickly generates a feasible
trajectory with nominal inputs, and forward it to the control
module. Given duration of path, start and end conditions,
the path can be very quickly generated as a polynoimial
fitting problem. The basis of the planning module can be
referred to the paper [1], here only participant’s adaptations
are mentioned.

A. Trajectory generation

The minimum jerk trajectory generation has a Python ver-
sion available. It quickly creates trajectory between starting
point and a goal, while considering the end constraints. To
allow continuous fast motion in the racing setup, the goal
only has constraints of zero acceleration in each dimen-
sions(corresponding to hovering), without any limitations on
end velocity.

B. Feasibility checks

On top of the input feasibility checks of body rates and
thrust, the participant added an orientation constraints to
disallow the drone from deviating too much from nominal
thrust direction. The deviation is limited to 56 degrees. Strong
tilting of the drone can violate the simplification in the
planner, where motion in each translational axis is computed
independently. This modification was crucial. Without this
change the controller can no longer follow the planner in
certain cases.

C. Binary search

To approximate optimal control given the goal location and
the constraints, the planning modules runs a binary search
to identify the fastest possible trajectory that conform with
the given constraints, up to certain resolution. Typically, with
decent boundary selection, the planning module finds the best
feasible trajectory with 0.05 second tolerance after several
iterations.



D. Post process

The resulting orientation of the trajectory is yaw-
independent, with angular rates in inertial frame. To make
things compatible with the controller, the orientation difference
between current state from simulator and the initial planning
state is computed, and multiplied to every states in the trajec-
tory. This orientation is than used to convert body rates from
inertial frame into actual reference control signals in body
frame.

IV. CONTROL

The MPC controller uses a linearized system model at
operation point and an open-source implementation in C++
with the ACADO library [3]. The library generates C code
which is highly efficient and allows run-time configurations. A
python binding is added on top to call the executable through
python interface. The system does not model drag forces and
torques. The majority of the implementation can be used as-is,
with some minor modifications.

A. Implementation details

A control frequency of 20 Hz is chosen, with a horizon of
20 steps. Every 0.05 seconds the control thread computes the
next best input. Most of the weights are kept from the original
formulation, with slight increase in the z position to emphasize
height.

B. Input constraints

Input is thought to be bounded between 10% and twice the
gravity of the drone, based on the observation that 0.5 thrust
input correspond to hovering. Angular body rates of roll and
pitch are limited at π rad/s , whereas the yaw rate is disabled.
Yaw control is unnecessary for executing the optimal path. The
inputs on a drone is indeed correlated: A drone can’t control
its body rate anymore if full thrust is engaged. The generated
ACADO code can not deal with such non-linear constraints,
this needs to be handled separately.

C. Using future control input

As the control input is delayed with respect to the incoming
state from simulator, the control input at time step 1 instead of
time step 0 is used to counteract the delay. Strictly speaking
the first control input should be removed from the formulation,
this however does not matter much in practice.

V. FAILURE HANDLING AND FINE TUNING

The planning thread closely observe the current state of
robot, and gives the following status signals with increasing
severity:

1) System is healthy, no planning needs to be done.
2) The drone has passed the target gate, new planning is

required for next goal.
3) The reference trajectory in the controller is shorter than

the horizon. Extend current trajectory by next immediate
goal.

4) The drone has accumulated orientation error over several
frames. Re-plan the path to current target. This helps
correcting the discrepancy between planner and control
model, which would be linearized differently otherwise.

5) Drone has saturated its control input, it’s likely to
become unstable. Re-plan the path to current target. This
can happen when unmodeled disturbances have strong
impact on the system, such as the air drag.

6) The drone has deviated from target path and is losing
height. A recovery behavior is implemented trying to
recover height and go back to original path.

To achieve best performance, several fine tuning was re-
quired:

1) Augment target gate poses in the z direction by a small
margin. This is due to the likely height loss in highly
dynamical situations.

2) To achieve some form of predictive behavior when
switching from current goal to next, the planner pre-
dicts the drone’s location in the immediate future and
preemptively switches the planning target. This helps
generating smooth path and avoid overshooting.

VI. ADAPTATION FOR FINALS

Several changes had to be made for the final submission,
stated below.

A. Final Tier 1
The final map is significantly more complicated and chal-

lenging, and many manual tweaks had to be made. Specifically,
the following:

• Additional artificial checkpoint had to be added to avoid
flying the wrong direction towards the ”box” area.

• Look ahead time for switching to next target is now a
parameter for each gate to be tuned. This is neede to
account for vastly different velocities.

VII. OUTLOOK

Some additional points can be implemented if this solution
qualifies for the final.

• Add MPC constraints to avoid crashing into opponents
or gates. This can be added as online data for generated
C code from ACADO.

• Perceive the gates. To extend the current solution to
Tier 3, a vision-based gate estimation needs to be im-
plemented. The planner can than be called to quickly
generate another feasible path.
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