
AirSim: High-Fidelity Visual and Physical
Simulation for Autonomous Vehicles

Shital Shah1, Debadeepta Dey2, Chris Lovett3, Ashish Kapoor4

Abstract Developing and testing algorithms for autonomous vehicles in real world
is an expensive and time consuming process. Also, in order to utilize recent advances
in machine intelligence and deep learning we need to collect a large amount of
annotated training data in a variety of conditions and environments. We present
a new simulator built on Unreal Engine that offers physically and visually realistic
simulations for both of these goals. Our simulator includes a physics engine that can
operate at a high frequency for real-time hardware-in-the-loop (HITL) simulations
with support for popular protocols (e.g. MavLink). The simulator is designed from
the ground up to be extensible to accommodate new types of vehicles, hardware
platforms and software protocols. In addition, the modular design enables various
components to be easily usable independently in other projects. We demonstrate
the simulator by first implementing a quadrotor as an autonomous vehicle and then
experimentally comparing the software components with real-world flights.

1 Introduction

Recently, paradigms such as reinforcement learning [12], learning-by-demonstration
[2] and transfer learning [25] are proving a natural means to train various robotics
systems. One of the key challenges with these techniques is the high sample com-
plexity - the amount of training data needed to learn useful behaviors is often pro-
hibitively high. This issue is further exacerbated by the fact that autonomous vehi-
cles are often unsafe and expensive to operate during the training phase. In order to
seamlessly operate in the real world the robot needs to transfer the learning it does
in simulation. Currently, this is a non-trivial task as simulated perception, environ-
ments and actuators are often simplistic and lack the richness or diversity of the
real world. For example, for robots that aim to use computer vision in outdoor en-

1, 2, 3, 4, Microsoft Research, Redmond, WA, USA e-mail: shitals,dedey,clovett,
akapoor@microsoft.com

1

shitals, dedey, clovett, akapoor@microsoft.com
shitals, dedey, clovett, akapoor@microsoft.com

2 Shah, Dey, Lovett, and Kapoor

Fig. 1 A snapshot from AirSim shows an aerial vehicle flying in an urban environment. The inset
shows depth, object segmentation and front camera streams generated in real time.

vironments, it may be important to model real-world complex objects such as trees,
roads, lakes, electric poles and houses along with rendering that includes finer de-
tails such as soft shadows, specular reflections, diffused inter-reflections and so on.
Similarly, it is important to develop more accurate models of system dynamics so
that simulated behavior closely mimics the real-world.

AirSim is an open-source platform [21] that aims to narrow the gap between
simulation and reality in order to aid development of autonomous vehicles. The
platform seeks to positively influence development and testing of data-driven ma-
chine intelligence techniques such as reinforcement learning and deep learning. It is
inspired by several previous simulators (see related work), and one of our key goals
is to build a community to push the state-of-the-art towards this goal.

2 Related Work

While an exhaustive review of currently used simulators is beyond the scope of this
paper, we mention a few notable recent works that are closest to our setting and has
deeply influenced this work.

Gazebo [13] has been one the most popular simulation platforms for the research
work. It has a modular design that allows to use different physics engines, sensor
models and create 3D worlds. Gazebo goes beyond monolithic rigid body vehicles
and can be used to simulate more general robots with links-and-joints architecture
such as complex manipulator arms or biped robots. While Gazebo is fairly feature
rich it has been difficult to create large scale complex visually rich environments

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 3

that are closer to the real world and it has lagged behind various advancements in
rendering techniques made by platforms such as Unreal engine or Unity.

Other notable efforts includes Hector [17] that primarily focuses on tight integra-
tion with popular middleware ROS and Gazebo. It offers wind tunnel tuned flight
dynamics, sensor models that includes bias drift using Gaussian Markov process and
software-in-loop using Orocos toolchain. However, Hector lacks support for popu-
lar hardware platforms such as Pixhawk and protocols such as MavLink. Because
of its tight dependency on ROS and Gazebo, it’s limited by richness of simulated
environments as noted previously.

Similarly, RotorS [7] provides a modular framework to design Micro Aerial Ve-
hicles, and build algorithms for control and state estimation that can be tested in
simulator. It is possible to setup RotorS for HITL with Pixhawk. RotorS also uses
Gazebo as its platform, consequently limiting its perception related capabilities.

Finally, jMavSim [1] is easy to use simulator that was designed with a goal of
testing PX4 firmware and devices. It is therefore tightly coupled with PX4 simula-
tion APIs, uses albeit simpler sensor models and utilizes simple rendering engine
without any objects in the environment.

Apart from these, there have been many games like simulators and training ap-
plications, however, these are mostly commercial closed-source software with little
or no public information on models, accuracy of simulation or development APIs
for autonomous applications.

3 Architecture

Our simulator follows a modular design with an emphasis on extensibility. The
core components includes environment model, vehicle model, physics engine, sen-
sor models, rendering interface, public API layer and an interface layer for vehicle
firmware as depicted in Figure 2.

The typical setup for an autonomous aerial vehicle includes the flight controller
firmware such as PX4 [16], ROSFlight [10], Hackflight[15] etc. The flight controller
takes desired state and the sensor data as inputs, computes the estimate of current
state and outputs the actuator control signals to achieve the desired state. For exam-
ple, in case of quadrotors, user may specify desired pitch, roll and yaw angles as
desired state and the flight controller may use sensor data from accelerometer and
gyroscope to estimate the current angles and finally compute the motor signals to
achieve the desired angles.

During simulation, the simulator provides the sensor data from the simulated
world to the flight controller. The flight controller outputs the actuator signals which
is taken as input by the the vehicle model component of the simulator. The goal of
the vehicle model is to compute the forces and torques generated by the simulated
actuators. For example, in case of quadrotors, we compute the thrust and torques
produced by the propellers given the motor voltages. In addition, there may be forces
generated from drag, friction and gravity. These forces and torques are then taken

4 Shah, Dey, Lovett, and Kapoor

Fig. 2 The architecture of the system that depicts the core components and their interactions.

as inputs by the physics engine to compute the next kinematic state of bodies in the
simulated world. This kinematic state of bodies along with the environment models
for gravity, air density, air pressure, magnetic field and geographic location (GPS
coordinates) provides the ground truth for the simulated sensor models.

The desired state input to the flight controller can be set by human operator using
remote control or by a companion computer in the autonomous setting. The com-
panion computer may perform expensive higher level computations such as deter-
mining next desired waypoint, performing simultaneous localization and mapping
(SLAM), computing desired trajectory etc. The companion computer may have to
process large amount of data generated by the sensors such as vision cameras and
lidars which in turn requires that simulated environments have reasonable details.
This has been one of the challenging areas where we leverage recent advances in
rendering technologies implemented by platforms such as Unreal engine [11]. In
addition, we also utilize the underlying pipeline in the Unreal engine to detect col-
lisions. The companion computer interacts with the simulator via a set of APIs that
allows it to observe the sensor streams, vehicle state and send commands. These
APIs are designed such that it shields the companion computer from being aware
of whether its being run under simulation or in the real world. This is particularly
important so that one can develop and test algorithms in simulator and deploy to
real vehicle without having to make additional changes.

The AirSim code base is implemented as a plugin for the Unreal engine that can
be dropped in to any Unreal project. The Unreal engine platform offers an elaborate
marketplace with hundreds of pre-made detailed environments, many created using
photogrammetry techniques [18] to generate reasonably faithful reconstruction of
real-world scenes.

Next, we provide more details on the individual components of the simulator.

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 5

Fig. 3 Vehicle model for the quadrotor. The four blue vertices experience the controls u1, ..u4,
which in turn results in the forces F1, ..,F4 and the torques τ1, ..,τ4.

3.1 Vehicle Model

AirSim provides an interface to define vehicle as a rigid body that may have arbitrary
number of actuators generating forces and torques. The vehicle model includes pa-
rameters such as mass, inertia, coefficients for linear and angular drag, coefficients
of friction and restitution which is used by the physics engine to compute rigid body
dynamics.

Formally, a vehicle is defined as a collection of K vertices placed at positions
{r1, ..,rk} and normals {n1, ..,nk}, each of which experience a unitless vehicle spe-
cific scaler control input {u1, ..,uk}. The forces and torques from these vertices are
assumed to be generated in the direction of their normals. However note that the
positions as well as normals are allowed to change during the simulation.

Figure 3 shows how a quadrotor can be depicted as a collection of four vertices.
The control input ui drives the rotational speed of the propellers located at the four
vertices. We compute the forces and torques produced by propellers using [4]:

Fi =CT ρω
2
maxD4ui and τi =

1
2π

Cpowρω
2
maxD5ui.

Here CT and Cpow are the thrust and the power coefficients respectively and are
based on the physical characteristics of the propeller, ρ is the air density, D is the
propeller’s diameter and ωmax is the max angular velocity in revolutions per minute.
By allowing the movements of these vertices during the flight it is possible to sim-
ulate the vehicles with capabilities such as Vertical Take-Off and Landing (VTOL)
and other recent quadrotors that change their configuration in flight.

The vehicle model abstract interface also provides a way to specify the cross
sectional area in body frame that in turn can be used by physics engine to compute
the linear and angular drag on the body.

6 Shah, Dey, Lovett, and Kapoor

3.2 Environment

The vehicle is exposed to various physical phenomena including gravity, air-density,
air pressure and magnetic field. While it is possible to produce computationally
expensive models of these phenomena that are very accurate, we focus our attention
to models that are accurate enough to allow a real-time operation with hardware-in-
the-loop. We describe these individual components of the environment below.

3.2.1 Gravity

While many models use a constant number to model the gravity, it varies in a com-
plex manner as demonstrated by models such as GRACE [23]. For most ground
based or low altitude vehicles these variations may not be important; however, it
is fairly inexpensive to incorporate a more accurate model. Formally, we approxi-
mate the gravitational acceleration g at height h by applying binomial theorem on
Newton’s law of gravity and neglecting the higher powers:

g = g0 ·
R2

e

(Re +h)2 ≈ g0 ·
(

1−2
h
Re

)
.

Here Re is Earth’s radius and g0 is the gravitational constant measured at the surface.

3.2.2 Magnetic Field

Accurately modeling the magnetic field of a complex body such as Earth is a com-
putationally expensive task. The World Magnetic Model (WMM) model [6] by Na-
tional Oceanic and Atmospheric Administration (NOAA) is one of the best known
magnetic models of Earth. Unfortunately, the most recent model WMM2015 is
fairly complex and computationally expensive for real-time applications.

We implemented the tilted dipole model where we assume Earth as a perfect
dipole sphere [14, pp 27-30]. This ignores all but the first order terms to derive mag-
netic field estimate using the spherical geometry. This model allows us to simulate
variation of the magnetic field as we move in space as well as areas that are often
problematic such as polar regions. Given a geographic latitude θ , longitude φ and
altitude h (from surface of the earth), we first compute the magnetic co-latitude θm
using:

cosθm = cosθ cosθ
0 + sinθ sinθ

0 cos(φ −φ
0).

Where θ 0 and φ 0 denote the latitude and longitude of the true magnetic north pole.
Then, the total magnetic intensity |B| is computed as:

|B|= B0(
Re

Re +h
)3
√

1+3cos2 θm

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 7

Here B0 is the mean value of the magnetic field at the magnetic equator on the
Earth’s surface, θm is the magnetic co-latitude and Re is the mean radius of the
Earth. Next, we determine the inclination α and declination β angles using:

tanα = 2cotθm and sinβ =

{
sin(φ −φ 0) cosθ 0

sinθm
, if cosθm > sinθ 0 sinθ

cos(φ −φ 0) cosθ 0

sinθm
, otherwise.

Finally, we can compute the horizontal field intensity (H), the latitudinal (X), the
longitudinal (Y) and the vertical field (Z) components of the magnetic field vector
as follows:

H = |B|cosα Z = |B|sinα X = H cosβ Y = H sinβ .

3.2.3 Air Pressure and Density

The relationship between the altitude and the pressure of the Earth’s atmosphere is
complicated due to the presence of many distinct layers, each with its own individual
properties. First we compute Standard Temperature T and Standard Pressure P using
1976 U.S. Standard Atmosphere model [22, eq 1.16, 1.17] for altitude below 51
kilometers and switch to the model in [3, Table 4] beyond that up to 86 km. Then,
the air density is ρ = P

R·T (where R is the specific gas constant.)

3.3 Physics Engine

The kinematic state of the body is expressed using 6 quantities: position, orientation,
linear velocity, linear acceleration, angular velocity and angular acceleration. The
goal of the physics engine is to compute the next kinematic state for each body given
the forces and torques acting on it. We strive for an efficient physics engine that can
run its update loop at high frequency (1000 Hz) which is desirable for enabling real-
time simulation scenarios such as high speed quadrotor control. Consequently, we
implement a physics engine that avoids the extra complexities of a generic engine
allowing us to tightly control the performance and make trade-offs that best meet
our requirements.

3.3.1 Linear and Angular drag

Since the vehicle moves in the presence of air, the linear and the angular drag has a
significant effect on the dynamics of the body. The simulator computes the magni-
tude |Fd | of the linear drag force on the body according to the drag equation [24]:

|Fd |=
1
2

ρ|v|2ClinA.

8 Shah, Dey, Lovett, and Kapoor

Here Clin is the linear air drag coefficient, A is the vehicle cross-section and ρ is the
air density. This drag force acts in the direction opposite to the velocity vector v

Computing the angular drag for arbitrary shape remains complex and compu-
tationally intensive task. Many existing physics engines use a small but often an
arbitrary damping constant as a substitute for computing actual angular drag. We
provide simple but better approximations to model the angular drag.

Consider an infinitesimal surface area ds in the extremity of the body experienc-
ing the angular velocity ω . As the linear velocity dv experienced by ds is given by
rds×ω , we can now use the linear drag equation for ds [19, pp 160-161]:

|dF|= 1
2

ρ|rds×ω|2Clinds, where direction of dF is −rds×ω.

Now, the drag torque is computed by integrating over the entire surface: τd =
∫

S rds×
dF. To simplify the implementation, we approximate the body of the vehicle as set
of connected faces which further can be approximated as a rectangular box for the
purpose of evaluating the integral.

3.3.2 Accelerations

In addition to the drag forces and torques, we also need to consider the forces Fi and
the torques τi present on the vehicle at the vertex located at ri relative to center of
gravity (see section 3.1). We thus compute the net force and torque as:

Fnet = ∑
i

Fi +Fd and τnet = ∑
i
[τi + ri×Fi]+ τd .

We obtain the linear acceleration by applying Newton’s second law and then adding
gravity vector to compute the net acceleration, a = Fnet/m+g. The angular acceler-
ation in body frame is given by Euler’s rotation equation: α = I−1 · (τnet − (ω× (I ·
ω))), where, I is the inertia tensor and ω is angular velocity, both in body frame.

3.3.3 Integration

We update the position pk+1 of the body at time k+1 by integrating the velocity and
the initial position p0. The first order integration algorithms such as Euler method
diverges quickly with unbounded error although very simple to implement. In our
implementation we use Velocity Verlet algorithm instead of Runge Kutta for its
computationally inexpensiveness and stability while still being second order method
[9]. Formally,

vk+1 = vk +
ak +ak+1

2
·dt pk+1 = pk +vk ·dt +

1
2
·ak ·dt2

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 9

The angular velocity is updated in similar manner as linear velocity however updat-
ing orientation isn’t straight forward. One of the approach is to maintains the ori-
entation as a rotation matrix that is updated every time step. However this causes a
slow drift which must be corrected by orthonormalization at regular intervals which
is expensive. Alternative approach is to maintain rotations as much more efficient
quaternions which are also numerically stable and trivially normalizable. One of
the problem, however, is that the orientation quaternion is maintained in the world
frame while the angular velocity is maintained in the body frame in our framework.
To update the orientation, we first compute the angle-axis pair (αdt ,u) where αdt is
the angle traversed around unit vector u. We can compute the angle αdt = |ω| · dt
and axis by u = ω/|ω|. This allows us to compute equivalent change in quaternion
qdt representing the change in orientation in time dt. As noted before, qdt is in body
frame while qk in world reference frame. The problem now remains that of adding
qdt to qk to obtain qk+1 which can be proven to given by relationship qk+1 = qk ·qdt .

3.3.4 Collisions

Unreal engine offers a rich collision detection system optimized for different classes
of collision meshes and we directly use this feature for our needs. We receive the im-
pact position, impact normal and penetration depth for each collision that occurred
during the render interval. Our physics engine uses this data to compute the collision
response with Coulomb friction to modify both linear and angular kinematics.[8]

3.4 Sensors

AirSim offers sensor models for accelerometer, gyroscope, barometer, magnetome-
ter and GPS. All our sensor models are implemented as C++ header-only library and
can be independently used outside of AirSim. Like other components, sensor mod-
els are expressed as abstract interfaces so it is easy to replace or add new sensors.

3.4.1 Barometer

To simulate barometer, we compute ground truth pressure using the detailed model
of atmosphere (sec 3.2.3) and model the drift in the pressure measurement over
time using Gaussian Markov process [20] for more realistic behavior in long flights.
Formally, if we denote the current bias factor as bk then the drift is modeled as:

bk+1 = w ·bk +(1−w) ·η ,where: w = e−
dt
τ and η ∼ N(0,s2).

Here τ , is the time constant for the process and set to 1 hour in our model. η is
a zero mean Gaussian noise with standard deviation that can be selected using the

10 Shah, Dey, Lovett, and Kapoor

data available in [5]. This pressure p is then added with white noise drawn from
zero mean Gaussian distribution with standard deviation set from datasheet of the
sensor (such as MEAS MS56112). Finally we convert the pressure to altitude using
barometric formula used by the sensor’s driver:

h =
T0

a

[(
p
p0

)−(a·R
g)

−1

]
,

here T0 is the reference temperature (15 deg C), a =−6.5×10−3 is the temperature
gradient, g and R are the gravity and the specific gas constants, p0 is the current sea
level pressure and p is the measurement.

3.4.2 Gyroscope and Accelerometer

Gyroscope and accelerometers constitute the core of the inertial measurement unit
(IMU) [26]. We model these by adding white noise and bias drift over time to the
ground truth. For gyroscope, given the true angular velocity in body frame ω , we
compute the measurement ωout as,

ω
out = ω +ηa +bt , where ηa ∼ N(0,ra) and

bt = bt−1 +ηb, where ηb ∼ N

(
0,b0

√
dt
ta

)
.

Here parameters ra, bias b0 and the time constant for bias drift ta can either be ob-
tained from Allan variance plots or from datasheets. Accelerometer output is com-
puted in the similar manner except that we must first subtract gravity from the true
linear acceleration in the world frame and then convert the result to the body frame
before we add bias drift and noise.

3.4.3 Magnetometer

We use the tilted dipole model for Earth’s magnetic field 3.2.2, given the geographic
coordinates to compute the components of the ground truth magnetic field in body
frame and add the white noise as specified in the datasheet.

3.4.4 Global Positioning System (GPS)

Our GPS model simulates latency (typically 200ms), slower update rates (typically
50 Hz) and horizontal and vertical position error estimate decay rates to simulate
gaining fix over time. The decay rate is modeled using first order low pass filter
individually parameterized for horizontal and vertical fix.

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 11

3.5 Visual Rendering

Since advanced rendering and detailed environments have been a key requirement
for AirSim we chose Unreal Engine 4 (UE4) [11] as our rendering platform. UE4
offers several features that made it an attractive choice including it being an open
source and available on Linux, Windows as well as OSX. UE4 brings some of
the cutting edge graphics features such as physically based materials, photomet-
ric lights, planar reflections, ray traced distance field shadows, lit translucency etc.
Figure 1 shows a screen-shot from AirSim which highlight near photo-realistic ren-
dering capabilities. Further, Unreal’s large online Marketplace has various pre-made
elaborate environments, many of which are created using photogrammetry tech-
niques.

4 Experiments

We perform experiments primarily to evaluate how close the flight characteristic of
a quadrotor flying in real-world is to that of a simulation of the same vehicle in
AirSim. We also evaluate some of our sensor models against the real-world sensors.

Hardware Platform: Real-world flights were performed with the Pixhawk v2 flight
controller mounted on a Flamewheel quadrotor frame, together with a Gigabyte
5500 Brix running Ubuntu 16.04. The sensor measurements were recorded on the
Pixhawk device itself. We configured the simulated quadrotor in AirSim using the
measured physical parameters and simulated sensor models configured using sensor
data sheets. The AirSim MavLinkTest application was used to perform repeatable
offboard control for both the real-world and the simulated flights.

Trajectory Evaluation: We fly the quadrotor in the simulator in two different pat-
terns: (1) trajectory in square shape with each side being 5m long (2) trajectory
in circle shape with radius being 10m long. We then use exact same commands to
fly the real vehicle. For both the simulation and the real-world flights, we collect
location of the vehicle in local NED coordinates along with timestamps.

Figure 4(c) and 4(d) shows the time series of locations in simulated flight and the
real flight. Here, the horizontal axis represents the time and the vertical axis repre-
sent the off-set in X and Y directions. We also compute the symmetric Hausdorff
distance between the real-world track and the track in simulation. We found that the
simulation and real-world tracks were fairly close both for the circle (Hausdorff dis-
tance between simulated and real-world: 1.47 m) as well as the square (Hausdorff
distance between simulated and real-world: 0.65 m).

We also present visual comparison for this experiment for the circle and the
square patterns in Figures 4(a) and 4(b) respectively. The simulated trajectory is
shown with a purple line while the real trajectory is shown with a red line. We
can observe that qualitatively the trajectories tracked by both the real-world and the
simulated vehicle are close. The small differences may have been caused by various

12 Shah, Dey, Lovett, and Kapoor

(a) Circle maneuver (b) Square maneuver

0 10 20 30 40 50
15
10

5
0
5

10
15

Simulated X (m)
Real X (m)

0 10 20 30 40 50
Time (seconds)

15
10

5
0
5

10
15

Simulated Y (m)
Real Y (m)

(c) Space-Time Plot for Circle

0 5 10 15 20 25 30 35 40
1
0
1
2
3
4
5
6

Simulated X (m)
Real X (m)

0 5 10 15 20 25 30 35 40
time (seconds)

1
0
1
2
3
4
5
6

Simulated Y (m)
Real Y (m)

(d) Space-Time Plot for Square

Fig. 4 Evaluating the differences between the simulated and the real-world flight. In top figures,
the purple and the red lines depict the track from simulation and the real-world flights respectively.

factors such as integration errors, vehicle model approximations and mild random
winds.

Sensor Models: Besides evaluating the entire simulation pipeline we also inves-
tigated individual component models, namely the barometer (MEAS MS5611-
01BA), the magnetometer (Honeywell HMC5883) and the IMU (InvenSense MPU
6000). Note that the simulated GPS model is currently simplistic, thus, we only fo-
cus on the three more complex sensor models. For each of the above sensors we use
the manufacture specified datasheets to set the parameters in the sensor models.

• IMU: We measured readings from the accelerometers and gyroscope as the
vehicle was stationary and flying. We observed that while the characteristics
were similar when the vehicle was stationary (gyro: simulated variance 2.47e−7
rad2/s2, real-world variance 6.71e−7 rad2/s2, accel.: simulated variance 1.78e−4
m2/s4, real-world variance 1.93e−4 m2/s4), the observed variance for an in-
flight vehicle was much higher than the simulated one (accel.: simulated 1.75e−3
m2/s4 vs. real-world 9.46 m2/s4). This is likely in real-world the airframe vi-
brates when the motors are running and that phenomenon is not yet modeled in
AirSim.

• Barometer: We raised the sensor periodically between two fixed heights: ground
level and then elevated to 178 cm (both in simulation and real-world). Figure 5(a)
shows both the measurements (green is simulated, blue is real-world) and we ob-

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles 13

0 50 100 150 200
Time (seconds)

1011.8

1012.0

1012.2

1012.4

1012.6

1012.8

1013.0

Real Pressure (mbar)
Simulated Pressure (mbar)

(a) Barometer

0 10 20 30 40 50 60 70 80
0.3

0.2

0.1

0.0

0.1

0.2

0.3
Real x-axis (Gauss)
Simulated x-axis (Gauss)

0 10 20 30 40 50 60 70 80
Time (seconds)

0.3

0.2

0.1

0.0

0.1

0.2

0.3
Real y-axis (Gauss)
Simulated y-axis (Gauss)

(b) Magnetometer

Fig. 5 Figure 5(a) and 5(b) show that barometer and the magnetometer characteristics in simula-
tion closely resemble that of the real world.

serve that the signals have similar characteristics. Note that the offset between the
simulated and the real-world pressure is due the difference in absolute pressure
in the real-world and the one in the simulation. There is also a small increase in
the middle due to a temperature increase, which wasn’t simulated. Overall, the
characteristics of the simulated sensor matches well to the real sensor.

• Magnetometer: We placed the vehicle on the ground and then rotated it by 90◦

four times. Figure 5(b) shows the real-world and the simulated measurements
and highlight that they are very similar in characteristic.

5 Conclusion and Future Work

AirSim offers hi-fidelity physical and visual simulation that allows to generate large
quantity of training data cheaply for building machine learning models. AirSim API
design allows developing algorithms against simulator and then deploy them with-
out change on real vehicles. The core components of AirSim including physics en-
gine, vehicle models, environment models and sensor models are designed to be
independently usable with minimal dependencies outside of AirSim and are eas-
ily extensible. AirSim is inspired by the goal of developing reinforcement learning
algorithms for the autonomous agents that can operate in the real world.

The task of mimicking the real-world in real-time simulation is a challenging
endeavor. There are a number of things that can be improved. Currently we do not
simulate richer collision response or advanced ground interaction models which
may be possible in future by implementing our physics engine interface for NVIDIA
PhysX and utilizing features such as physics sub-stepping. Also we do not simulate
various oddities in camera sensors except those directly available in Unreal engine.
We plan to add advanced noise models and lens models in future. The degradation
of GPS signal due to obstacles is not simulated yet which we plan to add using
ray tracing methods. We also plan to add more advanced wind effects and thermal

14 Shah, Dey, Lovett, and Kapoor

simulations for fixed wing vehicles. Our extensibility APIs have been designed with
above future work in mind and can also be used to realize other vehicle types.

References

1. Babushkin, A.: Jmavsim. https://pixhawk.org/dev/hil/jmavsim
2. Bagnell, J.A.: An invitation to imitation. Tech. rep., CMU ROBOTICS INST (2015)
3. Braeunig, R.: Atmospheric models. http://www.braeunig.us/space/atmmodel.

htm (2014)
4. Brandt, J., Deters, R., Ananda, G., Selig, M.: Uiuc propeller database, university of illinois at

urbana-champaign. http://m-selig.ae.illinois.edu/props/propDB.html (2015)
5. Burch D., B.T.: Mariner’s Pressure Atlas: Worldwide Mean Sea Level Pressures and Standard

Deviations for Weather Analysis. Starpath School of Navigation (2014)
6. Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B., Woods, A., Ridley,

V., Maus, S., Thomson, A.: The us/uk world magnetic model for 2015-2020 (2015). DOI
10.7289/V5TB14V7

7. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: Rotorsa modular gazebo mav simulator
framework. In: Robot Operating System (ROS), pp. 595–625. Springer (2016)

8. Hecker, C.: Physics, part 3: Collision response. Game Developer Magazine (1997)
9. Herman, R.: A first course in differential equations for scientists and engineers. http://

people.uncw.edu/hermanr/mat361/ODEBook/ (2017)
10. Jackson, J., Ellingson, G., McLain, T.: Rosflight: A lightweight, inexpensive mav research and

development tool. In: ICUAS, pp. 758–762 (2016). DOI 10.1109/ICUAS.2016.7502584
11. Karis, B., Games, E.: Real shading in unreal engine 4. In: Proc. Physically Based Shading

Theory Practice (2013)
12. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. Int. J. Rob.

Res. 32(11), 1238–1274 (2013). DOI 10.1177/0278364913495721
13. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot

simulator. In: IROS (2004)
14. Lanza, R., Meloni, A.: The Earth’s Magnetism: An Introduction for Geologists. Springer

Science & Business Media (2006)
15. Levy, S.: Hackflight: Simple quadcopter flight control firmware and simulator for c++ hackers.

https://github.com/simondlevy/hackflight
16. Meier, L., Tanskanen, P., Fraundorfer, F., Pollefeys, M.: Pixhawk: A system for autonomous

flight using onboard computer vision. In: ICRA, pp. 2992–2997. IEEE (2011)
17. Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., Von Stryk, O.: Comprehensive simu-

lation of quadrotor uavs using ros and gazebo. In: SIMPAR, pp. 400–411. Springer (2012)
18. Moore, H.: Creating assets for the open world demo (2015)
19. Nakayama, Y., Boucher, R.: Introduction to fluid mechanics. Butterworth-Heinemann (1998)
20. Sabatini, A.M., Genovese, V.: A stochastic approach to noise modeling for barometric altime-

ters. Sensors (Basel, Switzerland) 13(11), 15,692–15,707 (2013)
21. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim open source platform at github. https:

//github.com/Microsoft/AirSim (2017)
22. Stull, R.: Practical Meteorology: An Algebra-based Survey of Atmospheric Science. Univer-

sity of British Columbia (2015)
23. Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Poole, S.: The ggm03

mean earth gravity model from grace. In: American Geophysical Union, G42A-03 (2007)
24. Taylor, J.: Classical mechanics. University Science Books (2005)
25. Weiss, K., Khoshgoftaar, T.M., Wang, D.: A survey of transfer learning. Journal of Big Data

3(1), 9 (2016). DOI 10.1186/s40537-016-0043-6
26. Woodman, O.J.: An introduction to inertial navigation. Tech. Rep. UCAM-CL-TR-696, Uni-

versity of Cambridge, Computer Laboratory (2007)

https://pixhawk.org/dev/hil/jmavsim
http://www.braeunig.us/space/atmmodel.htm
http://www.braeunig.us/space/atmmodel.htm
http://people.uncw.edu/hermanr/mat361/ODEBook/
http://people.uncw.edu/hermanr/mat361/ODEBook/
https://github.com/simondlevy/hackflight
https://github.com/Microsoft/AirSim
https://github.com/Microsoft/AirSim

	AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles
	Shital Shah1, Debadeepta Dey2, Chris Lovett3, Ashish Kapoor4
	Introduction
	Related Work
	Architecture
	Vehicle Model
	Environment
	Physics Engine
	Sensors
	Visual Rendering

	Experiments
	Conclusion and Future Work
	References

