Benchmarking Affordance Generalization with
BusyBox

Dean Fortier* Timothy Adamson' Tess Hellebrekers*
Teresa LaScala* Kofi Ennin’ Michael Murray*
Andrey Kolobov* Galen Mullins*
Abstract:

Robot Foundation Models (RFMs) have been attracting the attention of re-
searchers and practitioners thanks to their promise of generalization. Although
single-task policies still offer competitive performance [1], RFMs are increasingly
able to handle commands and environments unseen in their training set [2]. While
generalization in vision and language space is undoubtedly important for robust
versatile behaviors, a key meta-skill RFMs need to possess is affordance general-
ization — the ability to manipulate new objects with familiar physical features.

In this work, we present BusyBox, a physical benchmark for systematic semi-
automatic evaluation of RFMs’ affordance generalization. BusyBox consists of 6
modules with switches, sliders, wires, buttons, a display, and a dial. The mod-
ules can be swapped and rotated to create a multitude of BusyBox variations with
different appearances but the same set of affordances. BusyBox’s electronics,
which can be readily purchased online at a low cost, can detect completion of
a task and its substeps. We empirically demonstrate that generalization across
BusyBox variants is highly challenging even for state-of-the-art publicly avail-
able RFMs such as my. To encourage researchers to evaluate their own RFMs on
BusyBox and to propose new affordance generalization experiments, we have de-
signed BusyBox to be easy to build in most robotics labs. We release the full set
of CAD files for 3D-printing its parts as well as a bill of materials for (option-
ally) assembling its electronics. We also publish a dataset of language-annotated
demonstrations that we collected using the common bimanual Mobile Aloha sys-
tem [3] on the canonical BusyBox configuration and describe the detailed data
collection protocol we followed. All of the released materials are available at
URL https://microsoft.github.io/BusyBox.

1 Introduction

Robot Foundation Models (RFMs) [4], also known as Vision-Language-Action (VLA) models [5],
hold the promise of revolutionizing robot control as much as large language models have advanced
natural language processing. In particular, they aim to make robot behaviors general, i.e., appli-
cable across robot embodiments, tasks, and environments — including those not represented in the
training data. Generalization takes many forms, and robotics researchers have created a number
of benchmarks to evaluate them [6, 7, 8]. Some types of generalization studied in the context of

*Microsoft Research, {v—defortier ,tessh,telascal,michael.murray,akolobov, galenmullins}
Omicrosoft.com

fGenie, timadamson21@yahoo . com. Work done while at Microsoft Research.

Mississippi State University, kofienninacheampong@gmail.com. Work done while at Microsoft Re-
search.

Eval & Deploy Workshop at the 9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://microsoft.github.io/BusyBox

(a) (b) (©

Figure 1: 3D-printed BusyBox configurations. Each of them consists of 6 modules: buttons, display,
knob, sliders, switches, and wires. (a) is the “canonical” configuration, on which we collected a
training set of demonstrations. (b) and (c) are two other configurations we chose arbitrarily for our
experiments.

robotics carry over from language and vision, e.g., characterizing an RFM’s ability to comprehend
new instructions referencing familiar concepts or recognize camera images of known objects in new
environments. However, robust physical interaction also requires RFMs to exhibit robotics-specific
generalization flavors, such as understanding how an unfamiliar object can be manipulated based
on its appearance and the robot’s experience of handling other objects in the past. We call this ca-
pability affordance generalization [9]. Key interface elements in environments designed for people
— buttons, switches, etc — are purposefully designed to look and function similarly across different
objects in order to facilitate the generalization of basic affordances for the average person. Indeed,
people see this capability as natural and expected. Accordingly, we posit that robots need to be able
to use basic affordances not only to operate fluently in human environments but also to be perceived
as intelligent and reliable.

This work introduces BusyBox (Figure 1), an open-source physical benchmark for systematically
evaluating basic affordance generalization in RFMs. BusyBox is a 3D-printable device consisting of
6 interlocked modules that have buttons of various colors, switches, sliders with marked positions,
wires with pluggable connectors, a knob, and a display. These control elements are commonly found
on everyday items in home and industrial environments. However, BusyBox itself looks different
from any objects likely to be present in RFMs’s training data. A key feature of BusyBox is that
its 6 modules can be easily swapped and rotated with respect to each other, giving rise to a family
of distinct BusyBox instances with the same set of basic affordances. A person seeing a BusyBox
instance for the first time can learn all its affordances in under a minute, including pulling out and
inserting wires, rotating the knob, and reading information on the display. Having learned them
on one BusyBox, the person will be able to use these affordances on any other BusyBox instances
zero-shot. How close do RFMs come to this level of affordance generalization?

A second contribution of our work is

an experiment protocol and a dataset flip switches
of demonstrations (see Figure 2) for

empirically answering questions like

this. We collected 1042 trajectories

across 7 task families representing push button

reposition robot
eposition box

BusyBox’s affordances, e.g., "rotate turn knob
the knob to position 4”, by teleop-
erating a Mobile Aloha system [3]
on a designated “canonical” Busy-
Box instance (Figure la). Next, we ;
X pull wire .
used this dataset to finetune mg [10], move slider
widely considered to be state-of-the-

art among open-weights RFMs, and Insert wire

evaluated this adapted model on the
same tasks on three BusyBox config-
urations in Figure 1- the canonical
one, on which we had collected the

Figure 2: Breakdown of our dataset of 1042 BusyBox
demonstrations by affordance category.

finetuning dataset, and two others. Our results show that the finetuned 7 is far from perfect on the
canonical BusyBox configuration, and fails completely on the other two. As this outcome demon-
strates, basic affordance learning and generalization is a major area for improvement even for the
strongest existing RFMs, and BusyBox as a benchmark is far from saturation.

Our study is only one example of experiments enabled by BusyBox. E.g., while we don’t explore
RFMs’ spatial reasoning, BusyBox is highly suitable for empirical evaluations of it, on tasks such
as "pull the 2nd wire from the left”. BusyBox can also be used for assessing the effectiveness
of verbal corrections during task execution [11, 12]. More broadly, BusyBox was inspired by the
interactive game Keep Talking and Nobody Explodes [13], which involves two players who need to
communicate with each other in order to determine and execute a sequence of actions that defuses
a bomb represented by BusyBox. BusyBox, as an implementation of this game, can be a rich
environment for evaluating physical and digital Al agents and studying human-robot interaction.

Last but not least, we release the electronics designs that log BusyBox’s state and allow for partly
automating evaluations involving BusyBox. This is especially convenient for analyzing the execu-
tion of multistep tasks, e.g., “move the top slider to 2, insert the red wire, and press the leftmost
button”, and makes BusyBox a physical counterpart of simulated benchmarks such as CALVIN [7].

In summary, our work’s contributions are:

* BusyBox, a physical benchmark for evaluating basic affordance generalization and CAD designs
for 3D-printing it.

* A language-annotated dataset of 1042 manipulation demonstrations, many of them bimanual,
gathered on BusyBox’s affordances.

* An experiment protocol for using this dataset or its equivalents for assesssing affordance general-
ization in RFMs, along with baseline empirical results on 7.

All of the released materials are available at https://microsoft.github.io/BusyBox.

2 BusyBox design and instrumentation

The BusyBox system follows a modular architecture that uses easily reproducible 3D-printed com-
ponents and instrumentation. To support robust and generalized policy evaluation, we provide scripts
for automated assessment and data collection. All CAD files, source code, and instructions refer-
enced herein are available on the project page at https://microsoft.github.io/BusyBox.

2.1 Modules

BusyBox comprises six distinct modules shown in Figure 1a, each representing a basic affordance.
These modules are visually intuitive and engineered to be well within the physical manipulation
capabilities of off-the-shelf 6-DoF robot arms with parallel grippers:

* Display Module: This module features an E Ink display and three LED indicators. It houses the
main electronics of the BusyBox and provides visual feedback to both the RFM and the user. The
E Ink display enhances information visibility for robots’ cameras.

* Buttons Module: Consisting of four colored, illuminated buttons, this module requires the robot
to press the correct button using a single arm. Rotating the module serves as a method to test
policy generalization, as agents may otherwise memorize button positions.

* Sliders Module: This module includes two sliders, each adjustable between values 1 and 5. The
primary challenge lies in determining which slider to move and ensuring accurate positioning.

* Knob Module: The knob can be rotated to a specified value between 1 and 6 and has a handle to
facilitate its manipulation. Occlusions can complicate rotating the knob to a desired position.

https://microsoft.github.io/BusyBox
https://microsoft.github.io/BusyBox

» Switches Module: Featuring left and right switches with on/off positions, this module is visually
simple but presents learning challenges, because the force required to flip the switch generally
means that one arm must manipulate the switch while the other needs to pin BusyBox in place.

* Wire Module: This module involves inserting or unplugging colored wires. Both insertion and
unplugging affordances are supported.

2.2 3D-printable design

One of our principal objectives in developing
the BusyBox was to facilitate its replication in
research laboratories. BusyBox also needed
to be robust enough to handle rough handling
as well as light enough to be picked up and
moved by standard bimanual manipulators used
in robot learning research. E.g., the common
Aloha system with ViperX follower arms is ca-
pable of lifting only a 750 gram payload per
arm. To this end, the body of BusyBox em-
ploys exclusively 3D-printed components in or-
der to maximize BusyBox’s strength-to-weight

ratio and make it easy to manufacture. Figure 3: Disassembled BusyBox

As shown in Figure 3, BusyBox’s components interlock using snap connectors, which streamlines
both assembly and disassembly, thereby enabling rapid reconfiguration of the BusyBox. The perime-
ter of the BusyBox’s interlocked modules is covered with side elements. Two of the side elements
have handles, adding the affordances of conveniently picking up and rotating the BusyBox. The
canonical BusyBox instance (Figure 1a) has 6 distinct modules in specific orientations, arranged
in a three-by-two grid. To obtain other configurations, such as those in Figure 1b and Figure Ic,
the modules can be easily permuted and rotated with respect to each other by 90, 180, or 270 de-
grees. BusyBox’s design also allows multiple instances of the same module, alternative module
arrangements such as two-by-two or two-by-one, and assemblies involving more than 6 modules.

We produced our BusyBox using a two-filament printer capable of printing in different colors. This
enhances the legibility of textual elements, as demonstrated with high-contrast color combinations
seen in Figure 3. For users lacking access to two-filament color printers, we have validated that
single-color prints with manually painted highlights including the position numbers for the sliders
and the knob are a practical alternative.

2.3 Instrumentation

To make both policy learning and evaluation easier, it is useful to have a mechanism that automati-
cally records the state of all of BusyBox’s controls at every time step. This not only helps determine
if a task has been accomplished but is also valuable for tracking progress [10] when a task con-
sists of several substeps, e.g., “move the top slider to 2, insert the red wire, and press the leftmost
button”. With this in mind, we provide readily replicable optional electronic instrumentation that
registers BusyBox state for live monitoring and/or recording it into demonstration trajectory files.
We emphasize that even without this instrumentation, the BusyBox can be used for RFM evaluation.

The central control unit is a Raspberry Pi 0, which resides in the primary module alongside an E Ink
display. This module must be included in the BusyBox configuration for the instrumentation to be
functional. The Raspberry Pi 0 is augmented with a USB expansion board, enabling all individual
components to interface via USB connections. We specifically selected the electrical components to
be widely available and pre-instrumented to function as USB devices via Arduino serial communi-
cation. This architecture supports plug-and-play compatibility between BusyBox elements and the
display module, enabling users to interchange modules freely. The instrumentation measurements
are broadcast on the network at 10 Hz using a Raspberry Pi.

Task type Instruction variants

Button “Push the {color} button with the {left, right} gripper.”
Slider “Move the {top, bottom} slider to position{1, 2, 3, 4, 5}
Knob “Turn the knob to position {1, 2, 3,4, 5, 6}.”
Switch “Flip the {left, right} switch {on, off} with the {left, right} gripper.”
Pull Wire “Pull the {red, black, blue, white} wire.”
Insert Wire “Insert the {red, black, blue, white} wire.”
BusyBox pose “Rotate BusyBox {clockwise, counter-clockwise}”
“Move BusyBox {left, right, closer, away}”
Robot pose “View BusyBox from above.”
“Move {left, right}, gripper to the {left, right}.”
“Open both grippers.”

“Open {left, right} gripper.”

Table 1: Task/affordance types and instruction variants.

The wireless networking capabilities of the
Raspberry Pi 0 allow users to remotely access
and monitor the state of the BusyBox. When
first powered on, the primary module displays
the connection information on the E Ink dis-
play. For greater control, the users may also
connect to the primary module directly via a
USB-C interface. Power is supplied to all mod-
ules through the Raspberry Pi 0’s USB ports,
with the option of either a wired connection or
a battery-powered setup. For battery operation, Figure 4: Illustration of our BusyBox data collec-
a standard 2500 mAh power brick is housed tion setup based on Mobile ALOHA.

within the BusyBox.

To facilitate remote monitoring and control, we developed a lightweight Web server and browser-
based interface for the BusyBox system. This interface provides real-time information on the oper-
ational status of each component of the BusyBox.

3 Data collection

To illustrate affordance generalization experiments enabled by BusyBox, we collected a finetuning
dataset for adapting an RFM on BusyBox’s affordances. To make this dataset useful for reproducing
our experiments as well as for training RFMs, in this section we detail our data collection protocol
and the dataset itself.

3.1 BusyBox dataset

We collected 1042 demonstrations data for the BusyBox task/affordance types listed in Table 1,
with the breakdown of the number of demonstrations across affordances listed in Figure 2. Each
task type was represented by by several possible language instructions. The instructions referenced
color, relative position, or final position of the manipulated controls. For bi-manual setups, some of
the language instructions also specified which manipulator to use. Table 1 covers the basic variations
of the language instructions we recorded for each task. The number of variations likely to be en-
countered during deployment is far larger, since, e.g., the user may refer to a component by a variety
of names, such as calling the rotating component a knob or dial. Our data collection workspace is
shown in Figure 4.

3.2 Teleoperation instructions

3.2.1 Randomizing the initial state

Ensuring the diversity of initial states of the demonstrations is crucial for state coverage in the
data and for learning robust policies. Given the number of factors of variation in the environment
(positions of the sliders, the switches, the BusyBox itself, the robot, etc), we chose not to rely on
the teleoperator to randomize the initial states along all these dimensions. Instead, generation of
initial states is directed by a script that gives instructions to the teleoperator before the start of each
demonstration. The parameters of each instruction are sampled uniformly at random, unless stated
otherwise. We assume that, before the teleoperator executes these instructions, the robot is facing
BusyBox directly, the BusyBox isn’t rotated, the BusyBox is centered along the near edge of the
workspace 2 inches from that edge, and all the wires are inserted, as in Figure 4:

Set the top slider to position sy, and the bottom slider to Spottom, Where Siop, Svottom ~
{1,2,3,4,5,between 1 and 2, ..., between 4 and 5}.

Set the knob to position Sgnop, Where Sgnob ~ {1,2,3,4,5,6,between 1 and 2, . .., between 6 and 1}.

Set the top switch to position swy., and the bottom switch to SWyoitom, Where sWiop, SWhottom ~
{on, off}.

With p = 0.5, leave all the wires inserted. Otherwise, for each wire independently with p = 0.5,
pull out one end of that wire.

Rotate the BusyBox by roughly ¢ degrees clockwise, where ¢ ~ {—60, —40, —20, 0, 20, 40, 60}.

Move the BusyBox roughly x inches away and y inches to the right, where x ~ {0,2,4}, y ~
{—4,-2,0,2,4}.

Rotate the robot by roughly 0 degrees clockwise, where 6 ~ {—10,10}.

3.2.2 Teleoperation style

To mitigate bias and unpredictable behavior in the finetuned models, the teleoperators were asked to
follow the general rules for data collection:

1.

Be efficient with movement. Demonstrations for tasks other than wire insertion should take no
longer than 15 seconds. For wire insertion, demonstrations should not exceed 45 seconds.

Keep moving. Demonstrations should be active, only remain still when something dynamic is
happening (i.e. dropping a wire).

End the demonstration when the requested task has been completed. There is no need to return
to a neutral position.

Start from different initial positions before recording. These starting positions fall between the
starting home position and somewhere above the BusyBox.

Whenever possible, ensure that both wrist cameras have a view of the parts of the environment
needed for task at hand.

In every episode, the task is sampled uniformly at random from the set in Table 1 (expanded to
include all the task variations). The initial state for a given episode is guaranteed to be constructed
so that task’s goal isn’t achieved in it. E.g., if the task is “Turn the knob to position 4 ”, then in the
initial state sampling process above, ’4’ is excluded from the set of values for the knob before an
initial state is sampled.

Additionally, teleoperators had to follow affordance-specific instructions:

1.

Buttons: With grippers closed, press the button with one gripper. End recording just after the
button is released and the gripper is a few inches above the button. If the button press was missed,
retry at most once before ending the recording.

2. Sliders: With grippers closed, move the slider by pushing it in one direction or another until the
slider reaches the position mentioned in the task description. If the value is overshot, correct the
overshoot and end the recording.

3. Pulling Wires: Pull out only one end of the wire, leaving the other end inserted.
4. Inserting Wires: When inserting a wire, the demonstration should not exceed 45 seconds.

5. Switches: Brace the box by holding the handle with one gripper and move the switch to the
desired position with the other gripper.

6. Knobs: With grippers closed, one gripper will nudge the knob until it is in the desired position
and the other will view with its camera. If the target is overshot, just nudge in the other direction.
If the box is moving while turning the knob, it is necessary for the second arm to brace the box.

4 Basic affordance generalization experiment

Using the dataset described in Section 3, we conducted a simple experiment meant to illustrate the
utility of BusyBox by answering the conceptual question: how well does a state-of-the-art open-
weights model do on affordance generalization?

In particular, we adopted my [10] as the target RFM and measured:

» Zero-shot success rate of 7y (denoted as 7y-ZS) on a set of BusyBox affordances on all 3
BusyBox configurations in Figure 1.

¢ Few-shot success rate of 7 (denoted as 7-FS) finetuned on our dataset, which was collected on
the canonical BusyBox from Figure 1a, on a set of BusyBox affordances across on all 3 BusyBox
configurations in Figure 1.

To measure the success rates, we chose 6 types of BusyBox affordances from — pressing button,
moving sliders, turning the knob, flipping switches, pulling wires, and inserting wires — and sam-
pled 10 instruction variants for each with replacement (see Table 1), for a total of 60 instructions.
For each of {mo-ZS, mo-FS} and each BusyBox configuration in Figure 1, our evaluation script com-
manded the Mobile Aloha to perform the 60 tasks in the same order, sampling the initial states as
in Section 3.2.1 and setting the time horizon to 45 seconds for wire insertion and 30 seconds for all
other tasks.

The results are presented in Table 2 and Table 3. Table 2 shows that without finetuning, 7y com-
pletely fails in this experiment (see my-ZS). We attribute this not only to my’s “unfamiliarity” with
BusyBox, but also to its unfamiliarity with Mobile Aloha: the majority of 7(’s pre-and post-training
data appears to have come from other robot platforms. More interestingly, even the finetuned 7
fails at generalizing affordances: it has some success only on the canonical BusyBoxconfiguration,
on whose data it was finetuned. Indeed, according to our observations, my-FS’s failures on non-

canonical BusyBox variants were due to my-FS reaching for the wrong module.

Experiment Successes Trials S.r. Task Successes Trials S.r.
mo-FS_canonical 18 60 30.0% pull_wire 4 10 40.0%
mo-FS_conf-1 0 60 0.0% push_button 4 10 40.0%
mo-FS_conf-2 0 60 0.0% move_slider 3 10 30.0%
To-ZS_canonical 0 60 0.0% turn_knob 5 10 50.0%
mo-ZS _conf-1 0 60 0.0% insert_wire 0 10 0.0%
mo-ZS_conf-2 0 60 0.0% flip_switches 2 10 20.0%
Table 2: Overall affordance generalization Table 3: Success Rate per Task for
performance mo-FS_canonical

5 Related Work

Compared to the existing evaluation tools for robot manipulation models, the novelty of our work
is in introducing a physical benchmark for systematic evaluation of affordance generalization in a
semi-automated way.

5.1 Physical Benchmarks

Physical benchmarks are common in robotic manipulation research and typically represent tasks
that are difficult or tedious to simulate. Examples include the Functional Manipulation Benchmark
(FMB) [14], FurnitureBench [15], NIST Task Boards [16], and Digital Robot Judge Task Boards
(DR. J.) [17]. Like BusyBox, NIST Task Boards and FurnitureBench involve manipulating de-
formable and articulated objects such as wires and switches. Their focus, however, is on assessing a
model’s ability to drive difficult contact-rich manipulation rather than its ability to generalize. FMB
has been used to benchmark generalization, but not specifically in the affordance space. DR. J. logs
changes in the box state, which can be used to verify task completion but, like FMB, doesn’t evaluate
affordance generalization.

5.2 Simulated Benchmarks

Simulation-based benchmarks robots provide consistent and controllable environments that make
task completion easier to measure reliably and record automatically. However, for modeling objects
such as switches, wires, and sliders, with all their imperfections that frequently hamper manipula-
tion, simulation has so far been too imprecise, too slow, or both. Common simulated task suites,
including LIBERO [8] and SimplerEnv [18], don’t involve complex objects like these, and eval-
uating affordance generalization isn’t their focus. The simulation-based benchmark that involves
operations most similar to those on BusyBox is BusyBoard [19]. However, BusyBoard is still very
distinct, lacks open-source CAD files for reproducing it, and, like the other benchmarks, sidesteps
evaluating affordance generalization.

5.3 Automated Evaluation on Real Hardware

AutoEval proposes an autonomous real-world evaluation framework for generalist robot manipula-
tion policies, automating task orchestration, success detection, logging, and environment resets to
reduce human supervision and enable long, unattended runs [20]. BusyBox is complementarys; its
sensor-instrumented modules (switches with detents, rotary knobs with indexed targets, sliders with
visual setpoints, pushbuttons, and wire routing/pulling) provide unambiguous, per-module success
signals and expose contact-rich, often bimanual behaviors that are hard to detect reliably with vision
alone. In practice, BusyBox can serve as an AutoEval-style evaluation target.

6 Conclusion

We presented an instrumented, modular, reconfigurable BusyBox for benchmarking affordance gen-
eralization in RFMs on real hardware. BusyBox targets basic affordances such as flipping switches
and plugging in audio cables, which are ubiquitous in home and industrial environments but are
underrepresented in existing datasets and benchmarks. BusyBox comes with open-source CAD
files and electronics design for easy reproduction in robotics research labs. Using a demonstration
dataset, which we collected on BusyBox and are also open-sourcing in this work, we conducted
an illustrative empirical study showing that even SOTA RFMs like my currently struggle with af-
fordance generalization. We hope that BusyBox will encourage more active and more reproducible
research on this subject.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour, C. Finn, and A. Wahid.
Aloha unleashed: A simple recipe for robot dexterity. In Proceedings of The 8th Conference
on Robot Learning, volume 270 of Proceedings of Machine Learning Research, pages 1910-
1924. PMLR, 06-09 Nov 2025.

P. Intelligence, K. Black, N. Brown, J. Darpinian, K. Dhabalia, D. Driess, A. Esmail, M. Equi,
C. Finn, N. Fusai, M. Y. Galliker, D. Ghosh, L. Groom, K. Hausman, B. Ichter, S. Jakubczak,
T. Jones, L. Ke, D. LeBlanc, S. Levine, A. Li-Bell, M. Mothukuri, S. Nair, K. Pertsch, A. Z.
Ren, L. X. Shi, L. Smith, J. T. Springenberg, K. Stachowicz, J. Tanner, Q. Vuong, H. Walke,
A. Walling, H. Wang, L. Yu, and U. Zhilinsky. 7g5: a vision-language-action model with
open-world generalization, 2025. URL https://arxiv.org/abs/2504.16054.

Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. In Conference on Robot Learning (CoRL), 2024.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card, R. Castellon, N. Chat-
terji, A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus,
S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn, T. Gale, L. Gillespie, K. Goel,
N. Goodman, S. Grossman, N. Guha, T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong,
K. Hsu, J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani,
O. Khattab, P. W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee,
T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning, S. Mirchan-
dani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan, D. Narayanan, B. Newman, A. Nie, J. C.
Niebles, H. Nilforoshan, J. Nyarko, G. Ogut, L. Orr, 1. Papadimitriou, J. S. Park, C. Piech,
E. Portelance, C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz,
J. Ryan, C. Ré, D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin,
R. Taori, A. W. Thomas, F. Tramer, R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M.
Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang, L. Zheng,
K. Zhou, and P. Liang. On the opportunities and risks of foundation models, 2022. URL
https://arxiv.org/abs/2108.07258.

B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid,
Q. Vuong, V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh, P. Sermanet, P. R. San-
keti, G. Salazar, M. S. Ryoo, K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski,
Y. Lu, S. Levine, L. Lee, T.-W. E. Lee, 1. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J.
Joshi, A. Irpan, B. Ichter, J. Hsu, A. Herzog, K. Hausman, K. Gopalakrishnan, C. Fu, P. Flo-
rence, C. Finn, K. A. Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebo-
tar, J. Carbajal, N. Brown, A. Brohan, M. G. Arenas, and K. Han. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. In J. Tan, M. Toussaint, and
K. Darvish, editors, Proceedings of The 7th Conference on Robot Learning, volume 229 of
Proceedings of Machine Learning Research, pages 2165-2183. PMLR, 0609 Nov 2023. URL
https://proceedings.mlr.press/v229/zitkovich23a.html.

S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. Rlbench: The robot learning benchmark &
learning environment, 2019. URL https://arxiv.org/abs/1909.12271.

O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters (RA-L), 7(3):7327-7334, 2022.

B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowl-
edge transfer for lifelong robot learning. In NeurIPS-2023 Track on Datasets and Benchmarks.

Y. Ju, K. Hu, G. Zhang, G. Zhang, M. Jiang, and H. Xu. Robo-ABC: Affordance generalization
beyond categories via semantic correspondence for robot manipulation. In ECCV, 2024.

https://arxiv.org/abs/2504.16054
https://arxiv.org/abs/2108.07258
https://proceedings.mlr.press/v229/zitkovich23a.html
https://arxiv.org/abs/1909.12271

[10] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Haus-
man, B. Ichter, S. Jakubczak, T. Jones, L. Ke, S. Levine, A. Li-Bell, M. Mothukuri, S. Nair,
K. Pertsch, L. X. Shi, J. Tanner, Q. Vuong, A. Walling, H. Wang, and U. Zhilinsky. my: A
vision-language-action flow model for general robot control, 2024. URL https://arxiv.
org/abs/2410.24164.

[11] H. Liu, A. Chen, Y. Zhu, A. Swaminathan, A. Kolobov, and C.-A. Cheng. Interactive robot
learning from verbal correction. In CoRL LangRob Workshop, 2023. URL https://arxiv.
org/abs/2310.17555.

[12] L. X. Shi, Z. Hu, T. Z. Zhao, A. Sharma, K. Pertsch, J. Luo, S. Levine, and C. Finn. Yell at
your robot: Improving on-the-fly from language corrections. arXiv preprint arXiv:2403.12910,
2024. URL https://arxiv.org/abs/2403.12910.

[13] A. Pestaluky, B. Kane, and B. Fetter. Keep talking and nobody explodes. https://
keeptalkinggame.com/, 2015. Steel Crate Games.

[14] J. Luo, C. Xu, F. Liu, L. Tan, Z. Lin, J. Wu, P. Abbeel, and S. Levine. Fmb: a functional
manipulation benchmark for generalizable robotic learning. International Journal of Robotics
Research, 2024.

[15] M. Heo, Y. Lee, D. Lee, and J. J. Lim. Furniturebench: Reproducible real-world benchmark
for long-horizon complex manipulation. In Robotics: Science and Systems, 2023.

[16] K. Kimble, K. V. Wyk, J. Falco, E. Messina, Y. Sun, M. Shibata, W. Uemura, and Y. Yokokohji.
Benchmarking protocols for eval uating small parts robotic assembly systems. IEEE Robotics
and Automation Letters, 5(2):883-889, 2020.

[17] P. So, A. Sarabakha, F. Wu, U. Culha, F. J. Abu-Dakka, and S. Haddadin. Digital robot judge:
Building a task-centric performance database of real-world manipulation with electronic task
boards. IEEE Robotics and Automation Magazine, December 2024,

[18] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kir-
mani, S. Levine, J. Wu, C. Finn, H. Su, Q. Vuong, and T. Xiao. Evaluating real-world robot
manipulation policies in simulation. In CoRL, 2024.

[19] Z. Liu, Z. Xu, and S. Song. Busybot: Learning to interact, reason, and plan in a busyboard
environment. In CoRL, 2022. URL https://arxiv.org/abs/2207.08192.

[20] Z. Zhou, P. Atreya, Y. L. Tan, K. Pertsch, and S. Levine. Autoeval: Autonomous evaluation of
generalist robot manipulation policies in the real world, 2025. URL https://arxiv.org/
abs/2503.24278.

10

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2310.17555
https://arxiv.org/abs/2310.17555
https://arxiv.org/abs/2403.12910
https://keeptalkinggame.com/
https://keeptalkinggame.com/
https://arxiv.org/abs/2207.08192
https://arxiv.org/abs/2503.24278
https://arxiv.org/abs/2503.24278

	Introduction
	BusyBox design and instrumentation
	Modules
	3D-printable design
	Instrumentation

	Data collection
	BusyBox dataset
	Teleoperation instructions
	Randomizing the initial state
	Teleoperation style

	Basic affordance generalization experiment
	Related Work
	Physical Benchmarks
	Simulated Benchmarks
	Automated Evaluation on Real Hardware

	Conclusion

