Research

2025: Smart Casual Verification of the Confidential Consortium Framework

The Confidential Consortium Framework (CCF) is an open-source platform for developing trustworthy and reliable cloud applications. CCF powers Microsoft’s Azure Confidential Ledger service and as such it is vital to build confidence in the correctness of CCF’s design and implementation. This paper reports our experiences applying smart casual verification to validate the correctness of CCF’s novel distributed protocols, focusing on its unique distributed consensus protocol and its custom client consistency model. We use the term smart casual verification to describe our hybrid approach, which combines the rigor of formal specification and model checking with the pragmatism of automated testing, in our case binding the formal specification in TLA+ to the C++ implementation. While traditional formal methods approaches require substantial buy-in and are often one-off efforts by domain experts, we have integrated our smart casual verification approach into CCF’s CI pipeline, allowing contributors to continuously validate CCF as it evolves. We describe the challenges we faced in applying smart casual verification to a complex existing codebase and how we overcame them to find six subtle bugs in the design and implementation before they could impact production.

2023: Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality, Integrity, and High Availability

Confidentiality, integrity protection, and high availability, abbreviated to CIA, are essential properties for trustworthy data systems. The rise of cloud computing and the growing demand for multiparty applications however means that building modern CIA systems is more challenging than ever. In response, we present the Confidential Consortium Framework (CCF), a general-purpose foundation for developing secure stateful CIA applications. CCF combines centralized compute with decentralized trust, supporting deployment on untrusted cloud infrastructure and transparent governance by mutually untrusted parties.

CCF leverages hardware-based trusted execution environments for remotely verifiable confidentiality and code integrity. This is coupled with state machine replication backed by an auditable immutable ledger for data integrity and high availability. CCF enables each service to bring its own application logic, custom multiparty governance model, and deployment scenario, decoupling the operators of nodes from the consortium that governs them.

2022: IA-CCF: Individual Accountability for Permissioned Ledgers

Permissioned ledger systems allow a consortium of members that do not trust one another to execute transactions safely on a set of replicas. Such systems typically use Byzantine fault tolerance (BFT) protocols to distribute trust, which only ensures safety when fewer than 1/3 of the replicas misbehave. Providing guarantees beyond this threshold is a challenge: current systems assume that the ledger is corrupt and fail to identify misbehaving replicas or hold the members that operate them accountable—instead all members share the blame.

We describe IA-CCF, a new permissioned ledger system that provides individual accountability. It can assign blame to the individual members that operate misbehaving replicas regardless of the number of misbehaving replicas or members. IA-CCF achieves this by signing and logging BFT protocol messages in the ledger, and by using Merkle trees to provide clients with succinct, universally-verifiable receipts as evidence of successful transaction execution. Anyone can audit the ledger against a set of receipts to discover inconsistencies and identify replicas that signed contradictory statements. IA-CCF also supports changes to consortium membership and replicas by tracking signing keys using a sub-ledger of governance transactions. IA-CCF provides strong disincentives to misbehavior with low overhead: it executes 47,000 tx/s while providing clients with receipts in two network round trips.

2019: CCF: A Framework for Building Confidential Verifiable Replicated Services

This paper presents CCF, a framework to build permissioned confidential blockchains. CCF provides a simple programming model of a highly-available data store and a universally-verifiable log that implements a ledger abstraction. CCF leverages trust in a consortium of governing members and in a network of replicated hardware-protected execution environments to achieve high throughput, low latency, strong integrity and strong confidentiality for application data and code executing on the ledger.