Stitchers¶
Stitcher
¶
Bases: ImageToPatches
Class to stitch detections of patches into original image coordinates system
This algorithm works as follow
1) Cut original image into patches 2) Make inference on each patches and harvest the detections 3) Patch the detections maps into the coordinate system of the original image Optional: 4) Upsample the patched detection map
Source code in PytorchWildlife/models/detection/herdnet/animaloc/eval/stitchers.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
|
__call__(image)
¶
Apply the stitching algorithm to the image
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Tensor
|
image of shape [C,H,W] |
required |
Returns:
Type | Description |
---|---|
Tensor
|
torch.Tensor the detections into the coordinate system of the original image |
Source code in PytorchWildlife/models/detection/herdnet/animaloc/eval/stitchers.py
__init__(model, size, overlap=100, batch_size=1, down_ratio=1, up=False, reduction='sum', device_name='cuda')
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model
|
Module
|
CNN detection model, that takes as inputs image and returns output and dict (i.e. wrapped by LossWrapper) |
required |
size
|
tuple
|
patches size (height, width), in pixels |
required |
overlap
|
int
|
overlap between patches, in pixels. Defaults to 100. |
100
|
batch_size
|
int
|
batch size used for inference over patches. Defaults to 1. |
1
|
down_ratio
|
int
|
downsample ratio. Set to 1 to get output of the same size as input (i.e. no downsample). Defaults to 1. |
1
|
up
|
bool
|
set to True to upsample the patched map. Defaults to False. |
False
|
reduction
|
str
|
specifies the reduction to apply on overlapping areas. Possible values are 'sum', 'mean', 'max'. Defaults to 'sum'. |
'sum'
|
device_name
|
str
|
the device name on which tensors will be allocated ('cpu' or 'cuda'). Defaults to 'cuda'. |
'cuda'
|