Model¶
HerdNet
¶
Bases: Module
HerdNet architecture
Source code in PytorchWildlife/models/detection/herdnet/model.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
__init__(num_layers=34, num_classes=2, pretrained=True, down_ratio=2, head_conv=64)
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_layers
|
int
|
number of layers of DLA. Defaults to 34. |
34
|
num_classes
|
int
|
number of output classes, background included. Defaults to 2. |
2
|
pretrained
|
bool
|
set False to disable pretrained DLA encoder parameters from ImageNet. Defaults to True. |
True
|
down_ratio
|
int
|
downsample ratio. Possible values are 1, 2, 4, 8, or 16. Set to 1 to get output of the same size as input (i.e. no downsample). Defaults to 2. |
2
|
head_conv
|
int
|
number of supplementary convolutional layers at the end of decoder. Defaults to 64. |
64
|
Source code in PytorchWildlife/models/detection/herdnet/model.py
freeze(layers)
¶
reshape_classes(num_classes)
¶
Reshape architecture according to a new number of classes.
Arg
num_classes (int): new number of classes