/home/runner/work/DirectXShaderCompiler/DirectXShaderCompiler/external/SPIRV-Tools/source/opt/loop_dependence.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2018 Google LLC. |
2 | | // |
3 | | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | | // you may not use this file except in compliance with the License. |
5 | | // You may obtain a copy of the License at |
6 | | // |
7 | | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | | // |
9 | | // Unless required by applicable law or agreed to in writing, software |
10 | | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | | // See the License for the specific language governing permissions and |
13 | | // limitations under the License. |
14 | | |
15 | | #include "source/opt/loop_dependence.h" |
16 | | |
17 | | #include <functional> |
18 | | #include <numeric> |
19 | | #include <string> |
20 | | #include <utility> |
21 | | #include <vector> |
22 | | |
23 | | #include "source/opt/instruction.h" |
24 | | #include "source/opt/scalar_analysis_nodes.h" |
25 | | |
26 | | namespace spvtools { |
27 | | namespace opt { |
28 | | |
29 | | using SubscriptPair = std::pair<SENode*, SENode*>; |
30 | | |
31 | | namespace { |
32 | | |
33 | | // Calculate the greatest common divisor of a & b using Stein's algorithm. |
34 | | // https://en.wikipedia.org/wiki/Binary_GCD_algorithm |
35 | 0 | int64_t GreatestCommonDivisor(int64_t a, int64_t b) { |
36 | | // Simple cases |
37 | 0 | if (a == b) { |
38 | 0 | return a; |
39 | 0 | } else if (a == 0) { |
40 | 0 | return b; |
41 | 0 | } else if (b == 0) { |
42 | 0 | return a; |
43 | 0 | } |
44 | | |
45 | | // Both even |
46 | 0 | if (a % 2 == 0 && b % 2 == 0) { |
47 | 0 | return 2 * GreatestCommonDivisor(a / 2, b / 2); |
48 | 0 | } |
49 | | |
50 | | // Even a, odd b |
51 | 0 | if (a % 2 == 0 && b % 2 == 1) { |
52 | 0 | return GreatestCommonDivisor(a / 2, b); |
53 | 0 | } |
54 | | |
55 | | // Odd a, even b |
56 | 0 | if (a % 2 == 1 && b % 2 == 0) { |
57 | 0 | return GreatestCommonDivisor(a, b / 2); |
58 | 0 | } |
59 | | |
60 | | // Both odd, reduce the larger argument |
61 | 0 | if (a > b) { |
62 | 0 | return GreatestCommonDivisor((a - b) / 2, b); |
63 | 0 | } else { |
64 | 0 | return GreatestCommonDivisor((b - a) / 2, a); |
65 | 0 | } |
66 | 0 | } |
67 | | |
68 | | // Check if node is affine, ie in the form: a0*i0 + a1*i1 + ... an*in + c |
69 | | // and contains only the following types of nodes: SERecurrentNode, SEAddNode |
70 | | // and SEConstantNode |
71 | 0 | bool IsInCorrectFormForGCDTest(SENode* node) { |
72 | 0 | bool children_ok = true; |
73 | |
|
74 | 0 | if (auto add_node = node->AsSEAddNode()) { |
75 | 0 | for (auto child : add_node->GetChildren()) { |
76 | 0 | children_ok &= IsInCorrectFormForGCDTest(child); |
77 | 0 | } |
78 | 0 | } |
79 | |
|
80 | 0 | bool this_ok = node->AsSERecurrentNode() || node->AsSEAddNode() || |
81 | 0 | node->AsSEConstantNode(); |
82 | |
|
83 | 0 | return children_ok && this_ok; |
84 | 0 | } |
85 | | |
86 | | // If |node| is an SERecurrentNode then returns |node| or if |node| is an |
87 | | // SEAddNode returns a vector of SERecurrentNode that are its children. |
88 | 0 | std::vector<SERecurrentNode*> GetAllTopLevelRecurrences(SENode* node) { |
89 | 0 | auto nodes = std::vector<SERecurrentNode*>{}; |
90 | 0 | if (auto recurrent_node = node->AsSERecurrentNode()) { |
91 | 0 | nodes.push_back(recurrent_node); |
92 | 0 | } |
93 | |
|
94 | 0 | if (auto add_node = node->AsSEAddNode()) { |
95 | 0 | for (auto child : add_node->GetChildren()) { |
96 | 0 | auto child_nodes = GetAllTopLevelRecurrences(child); |
97 | 0 | nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); |
98 | 0 | } |
99 | 0 | } |
100 | |
|
101 | 0 | return nodes; |
102 | 0 | } |
103 | | |
104 | | // If |node| is an SEConstantNode then returns |node| or if |node| is an |
105 | | // SEAddNode returns a vector of SEConstantNode that are its children. |
106 | 0 | std::vector<SEConstantNode*> GetAllTopLevelConstants(SENode* node) { |
107 | 0 | auto nodes = std::vector<SEConstantNode*>{}; |
108 | 0 | if (auto recurrent_node = node->AsSEConstantNode()) { |
109 | 0 | nodes.push_back(recurrent_node); |
110 | 0 | } |
111 | |
|
112 | 0 | if (auto add_node = node->AsSEAddNode()) { |
113 | 0 | for (auto child : add_node->GetChildren()) { |
114 | 0 | auto child_nodes = GetAllTopLevelConstants(child); |
115 | 0 | nodes.insert(nodes.end(), child_nodes.begin(), child_nodes.end()); |
116 | 0 | } |
117 | 0 | } |
118 | |
|
119 | 0 | return nodes; |
120 | 0 | } |
121 | | |
122 | | bool AreOffsetsAndCoefficientsConstant( |
123 | 0 | const std::vector<SERecurrentNode*>& nodes) { |
124 | 0 | for (auto node : nodes) { |
125 | 0 | if (!node->GetOffset()->AsSEConstantNode() || |
126 | 0 | !node->GetOffset()->AsSEConstantNode()) { |
127 | 0 | return false; |
128 | 0 | } |
129 | 0 | } |
130 | 0 | return true; |
131 | 0 | } |
132 | | |
133 | | // Fold all SEConstantNode that appear in |recurrences| and |constants| into a |
134 | | // single integer value. |
135 | | int64_t CalculateConstantTerm(const std::vector<SERecurrentNode*>& recurrences, |
136 | 0 | const std::vector<SEConstantNode*>& constants) { |
137 | 0 | int64_t constant_term = 0; |
138 | 0 | for (auto recurrence : recurrences) { |
139 | 0 | constant_term += |
140 | 0 | recurrence->GetOffset()->AsSEConstantNode()->FoldToSingleValue(); |
141 | 0 | } |
142 | |
|
143 | 0 | for (auto constant : constants) { |
144 | 0 | constant_term += constant->FoldToSingleValue(); |
145 | 0 | } |
146 | |
|
147 | 0 | return constant_term; |
148 | 0 | } |
149 | | |
150 | | int64_t CalculateGCDFromCoefficients( |
151 | 0 | const std::vector<SERecurrentNode*>& recurrences, int64_t running_gcd) { |
152 | 0 | for (SERecurrentNode* recurrence : recurrences) { |
153 | 0 | auto coefficient = recurrence->GetCoefficient()->AsSEConstantNode(); |
154 | |
|
155 | 0 | running_gcd = GreatestCommonDivisor( |
156 | 0 | running_gcd, std::abs(coefficient->FoldToSingleValue())); |
157 | 0 | } |
158 | |
|
159 | 0 | return running_gcd; |
160 | 0 | } |
161 | | |
162 | | // Compare 2 fractions while first normalizing them, e.g. 2/4 and 4/8 will both |
163 | | // be simplified to 1/2 and then determined to be equal. |
164 | | bool NormalizeAndCompareFractions(int64_t numerator_0, int64_t denominator_0, |
165 | 0 | int64_t numerator_1, int64_t denominator_1) { |
166 | 0 | auto gcd_0 = |
167 | 0 | GreatestCommonDivisor(std::abs(numerator_0), std::abs(denominator_0)); |
168 | 0 | auto gcd_1 = |
169 | 0 | GreatestCommonDivisor(std::abs(numerator_1), std::abs(denominator_1)); |
170 | |
|
171 | 0 | auto normalized_numerator_0 = numerator_0 / gcd_0; |
172 | 0 | auto normalized_denominator_0 = denominator_0 / gcd_0; |
173 | 0 | auto normalized_numerator_1 = numerator_1 / gcd_1; |
174 | 0 | auto normalized_denominator_1 = denominator_1 / gcd_1; |
175 | |
|
176 | 0 | return normalized_numerator_0 == normalized_numerator_1 && |
177 | 0 | normalized_denominator_0 == normalized_denominator_1; |
178 | 0 | } |
179 | | |
180 | | } // namespace |
181 | | |
182 | | bool LoopDependenceAnalysis::GetDependence(const Instruction* source, |
183 | | const Instruction* destination, |
184 | 0 | DistanceVector* distance_vector) { |
185 | | // Start off by finding and marking all the loops in |loops_| that are |
186 | | // irrelevant to the dependence analysis. |
187 | 0 | MarkUnsusedDistanceEntriesAsIrrelevant(source, destination, distance_vector); |
188 | |
|
189 | 0 | Instruction* source_access_chain = GetOperandDefinition(source, 0); |
190 | 0 | Instruction* destination_access_chain = GetOperandDefinition(destination, 0); |
191 | |
|
192 | 0 | auto num_access_chains = |
193 | 0 | (source_access_chain->opcode() == spv::Op::OpAccessChain) + |
194 | 0 | (destination_access_chain->opcode() == spv::Op::OpAccessChain); |
195 | | |
196 | | // If neither is an access chain, then they are load/store to a variable. |
197 | 0 | if (num_access_chains == 0) { |
198 | 0 | if (source_access_chain != destination_access_chain) { |
199 | | // Not the same location, report independence |
200 | 0 | return true; |
201 | 0 | } else { |
202 | | // Accessing the same variable |
203 | 0 | for (auto& entry : distance_vector->GetEntries()) { |
204 | 0 | entry = DistanceEntry(); |
205 | 0 | } |
206 | 0 | return false; |
207 | 0 | } |
208 | 0 | } |
209 | | |
210 | | // If only one is an access chain, it could be accessing a part of a struct |
211 | 0 | if (num_access_chains == 1) { |
212 | 0 | auto source_is_chain = |
213 | 0 | source_access_chain->opcode() == spv::Op::OpAccessChain; |
214 | 0 | auto access_chain = |
215 | 0 | source_is_chain ? source_access_chain : destination_access_chain; |
216 | 0 | auto variable = |
217 | 0 | source_is_chain ? destination_access_chain : source_access_chain; |
218 | |
|
219 | 0 | auto location_in_chain = GetOperandDefinition(access_chain, 0); |
220 | |
|
221 | 0 | if (variable != location_in_chain) { |
222 | | // Not the same location, report independence |
223 | 0 | return true; |
224 | 0 | } else { |
225 | | // Accessing the same variable |
226 | 0 | for (auto& entry : distance_vector->GetEntries()) { |
227 | 0 | entry = DistanceEntry(); |
228 | 0 | } |
229 | 0 | return false; |
230 | 0 | } |
231 | 0 | } |
232 | | |
233 | | // If the access chains aren't collecting from the same structure there is no |
234 | | // dependence. |
235 | 0 | Instruction* source_array = GetOperandDefinition(source_access_chain, 0); |
236 | 0 | Instruction* destination_array = |
237 | 0 | GetOperandDefinition(destination_access_chain, 0); |
238 | | |
239 | | // Nested access chains are not supported yet, bail out. |
240 | 0 | if (source_array->opcode() == spv::Op::OpAccessChain || |
241 | 0 | destination_array->opcode() == spv::Op::OpAccessChain) { |
242 | 0 | for (auto& entry : distance_vector->GetEntries()) { |
243 | 0 | entry = DistanceEntry(); |
244 | 0 | } |
245 | 0 | return false; |
246 | 0 | } |
247 | | |
248 | 0 | if (source_array != destination_array) { |
249 | 0 | PrintDebug("Proved independence through different arrays."); |
250 | 0 | return true; |
251 | 0 | } |
252 | | |
253 | | // To handle multiple subscripts we must get every operand in the access |
254 | | // chains past the first. |
255 | 0 | std::vector<Instruction*> source_subscripts = GetSubscripts(source); |
256 | 0 | std::vector<Instruction*> destination_subscripts = GetSubscripts(destination); |
257 | |
|
258 | 0 | auto sets_of_subscripts = |
259 | 0 | PartitionSubscripts(source_subscripts, destination_subscripts); |
260 | |
|
261 | 0 | auto first_coupled = std::partition( |
262 | 0 | std::begin(sets_of_subscripts), std::end(sets_of_subscripts), |
263 | 0 | [](const std::set<std::pair<Instruction*, Instruction*>>& set) { |
264 | 0 | return set.size() == 1; |
265 | 0 | }); |
266 | | |
267 | | // Go through each subscript testing for independence. |
268 | | // If any subscript results in independence, we prove independence between the |
269 | | // load and store. |
270 | | // If we can't prove independence we store what information we can gather in |
271 | | // a DistanceVector. |
272 | 0 | for (auto it = std::begin(sets_of_subscripts); it < first_coupled; ++it) { |
273 | 0 | auto source_subscript = std::get<0>(*(*it).begin()); |
274 | 0 | auto destination_subscript = std::get<1>(*(*it).begin()); |
275 | |
|
276 | 0 | SENode* source_node = scalar_evolution_.SimplifyExpression( |
277 | 0 | scalar_evolution_.AnalyzeInstruction(source_subscript)); |
278 | 0 | SENode* destination_node = scalar_evolution_.SimplifyExpression( |
279 | 0 | scalar_evolution_.AnalyzeInstruction(destination_subscript)); |
280 | | |
281 | | // Check the loops are in a form we support. |
282 | 0 | auto subscript_pair = std::make_pair(source_node, destination_node); |
283 | |
|
284 | 0 | const Loop* loop = GetLoopForSubscriptPair(subscript_pair); |
285 | 0 | if (loop) { |
286 | 0 | if (!IsSupportedLoop(loop)) { |
287 | 0 | PrintDebug( |
288 | 0 | "GetDependence found an unsupported loop form. Assuming <=> for " |
289 | 0 | "loop."); |
290 | 0 | DistanceEntry* distance_entry = |
291 | 0 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
292 | 0 | if (distance_entry) { |
293 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
294 | 0 | } |
295 | 0 | continue; |
296 | 0 | } |
297 | 0 | } |
298 | | |
299 | | // If either node is simplified to a CanNotCompute we can't perform any |
300 | | // analysis so must assume <=> dependence and return. |
301 | 0 | if (source_node->GetType() == SENode::CanNotCompute || |
302 | 0 | destination_node->GetType() == SENode::CanNotCompute) { |
303 | | // Record the <=> dependence if we can get a DistanceEntry |
304 | 0 | PrintDebug( |
305 | 0 | "GetDependence found source_node || destination_node as " |
306 | 0 | "CanNotCompute. Abandoning evaluation for this subscript."); |
307 | 0 | DistanceEntry* distance_entry = |
308 | 0 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
309 | 0 | if (distance_entry) { |
310 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
311 | 0 | } |
312 | 0 | continue; |
313 | 0 | } |
314 | | |
315 | | // We have no induction variables so can apply a ZIV test. |
316 | 0 | if (IsZIV(subscript_pair)) { |
317 | 0 | PrintDebug("Found a ZIV subscript pair"); |
318 | 0 | if (ZIVTest(subscript_pair)) { |
319 | 0 | PrintDebug("Proved independence with ZIVTest."); |
320 | 0 | return true; |
321 | 0 | } |
322 | 0 | } |
323 | | |
324 | | // We have only one induction variable so should attempt an SIV test. |
325 | 0 | if (IsSIV(subscript_pair)) { |
326 | 0 | PrintDebug("Found a SIV subscript pair."); |
327 | 0 | if (SIVTest(subscript_pair, distance_vector)) { |
328 | 0 | PrintDebug("Proved independence with SIVTest."); |
329 | 0 | return true; |
330 | 0 | } |
331 | 0 | } |
332 | | |
333 | | // We have multiple induction variables so should attempt an MIV test. |
334 | 0 | if (IsMIV(subscript_pair)) { |
335 | 0 | PrintDebug("Found a MIV subscript pair."); |
336 | 0 | if (GCDMIVTest(subscript_pair)) { |
337 | 0 | PrintDebug("Proved independence with the GCD test."); |
338 | 0 | auto current_loops = CollectLoops(source_node, destination_node); |
339 | |
|
340 | 0 | for (auto current_loop : current_loops) { |
341 | 0 | auto distance_entry = |
342 | 0 | GetDistanceEntryForLoop(current_loop, distance_vector); |
343 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
344 | 0 | } |
345 | 0 | return true; |
346 | 0 | } |
347 | 0 | } |
348 | 0 | } |
349 | | |
350 | 0 | for (auto it = first_coupled; it < std::end(sets_of_subscripts); ++it) { |
351 | 0 | auto coupled_instructions = *it; |
352 | 0 | std::vector<SubscriptPair> coupled_subscripts{}; |
353 | |
|
354 | 0 | for (const auto& elem : coupled_instructions) { |
355 | 0 | auto source_subscript = std::get<0>(elem); |
356 | 0 | auto destination_subscript = std::get<1>(elem); |
357 | |
|
358 | 0 | SENode* source_node = scalar_evolution_.SimplifyExpression( |
359 | 0 | scalar_evolution_.AnalyzeInstruction(source_subscript)); |
360 | 0 | SENode* destination_node = scalar_evolution_.SimplifyExpression( |
361 | 0 | scalar_evolution_.AnalyzeInstruction(destination_subscript)); |
362 | |
|
363 | 0 | coupled_subscripts.push_back({source_node, destination_node}); |
364 | 0 | } |
365 | |
|
366 | 0 | auto supported = true; |
367 | |
|
368 | 0 | for (const auto& subscript : coupled_subscripts) { |
369 | 0 | auto loops = CollectLoops(std::get<0>(subscript), std::get<1>(subscript)); |
370 | |
|
371 | 0 | auto is_subscript_supported = |
372 | 0 | std::all_of(std::begin(loops), std::end(loops), |
373 | 0 | [this](const Loop* l) { return IsSupportedLoop(l); }); |
374 | |
|
375 | 0 | supported = supported && is_subscript_supported; |
376 | 0 | } |
377 | |
|
378 | 0 | if (DeltaTest(coupled_subscripts, distance_vector)) { |
379 | 0 | return true; |
380 | 0 | } |
381 | 0 | } |
382 | | |
383 | | // We were unable to prove independence so must gather all of the direction |
384 | | // information we found. |
385 | 0 | PrintDebug( |
386 | 0 | "Couldn't prove independence.\n" |
387 | 0 | "All possible direction information has been collected in the input " |
388 | 0 | "DistanceVector."); |
389 | |
|
390 | 0 | return false; |
391 | 0 | } |
392 | | |
393 | | bool LoopDependenceAnalysis::ZIVTest( |
394 | 0 | const std::pair<SENode*, SENode*>& subscript_pair) { |
395 | 0 | auto source = std::get<0>(subscript_pair); |
396 | 0 | auto destination = std::get<1>(subscript_pair); |
397 | |
|
398 | 0 | PrintDebug("Performing ZIVTest"); |
399 | | // If source == destination, dependence with direction = and distance 0. |
400 | 0 | if (source == destination) { |
401 | 0 | PrintDebug("ZIVTest found EQ dependence."); |
402 | 0 | return false; |
403 | 0 | } else { |
404 | 0 | PrintDebug("ZIVTest found independence."); |
405 | | // Otherwise we prove independence. |
406 | 0 | return true; |
407 | 0 | } |
408 | 0 | } |
409 | | |
410 | | bool LoopDependenceAnalysis::SIVTest( |
411 | | const std::pair<SENode*, SENode*>& subscript_pair, |
412 | 0 | DistanceVector* distance_vector) { |
413 | 0 | DistanceEntry* distance_entry = |
414 | 0 | GetDistanceEntryForSubscriptPair(subscript_pair, distance_vector); |
415 | 0 | if (!distance_entry) { |
416 | 0 | PrintDebug( |
417 | 0 | "SIVTest could not find a DistanceEntry for subscript_pair. Exiting"); |
418 | 0 | } |
419 | |
|
420 | 0 | SENode* source_node = std::get<0>(subscript_pair); |
421 | 0 | SENode* destination_node = std::get<1>(subscript_pair); |
422 | |
|
423 | 0 | int64_t source_induction_count = CountInductionVariables(source_node); |
424 | 0 | int64_t destination_induction_count = |
425 | 0 | CountInductionVariables(destination_node); |
426 | | |
427 | | // If the source node has no induction variables we can apply a |
428 | | // WeakZeroSrcTest. |
429 | 0 | if (source_induction_count == 0) { |
430 | 0 | PrintDebug("Found source has no induction variable."); |
431 | 0 | if (WeakZeroSourceSIVTest( |
432 | 0 | source_node, destination_node->AsSERecurrentNode(), |
433 | 0 | destination_node->AsSERecurrentNode()->GetCoefficient(), |
434 | 0 | distance_entry)) { |
435 | 0 | PrintDebug("Proved independence with WeakZeroSourceSIVTest."); |
436 | 0 | distance_entry->dependence_information = |
437 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
438 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
439 | 0 | return true; |
440 | 0 | } |
441 | 0 | } |
442 | | |
443 | | // If the destination has no induction variables we can apply a |
444 | | // WeakZeroDestTest. |
445 | 0 | if (destination_induction_count == 0) { |
446 | 0 | PrintDebug("Found destination has no induction variable."); |
447 | 0 | if (WeakZeroDestinationSIVTest( |
448 | 0 | source_node->AsSERecurrentNode(), destination_node, |
449 | 0 | source_node->AsSERecurrentNode()->GetCoefficient(), |
450 | 0 | distance_entry)) { |
451 | 0 | PrintDebug("Proved independence with WeakZeroDestinationSIVTest."); |
452 | 0 | distance_entry->dependence_information = |
453 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
454 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
455 | 0 | return true; |
456 | 0 | } |
457 | 0 | } |
458 | | |
459 | | // We now need to collect the SERecurrentExpr nodes from source and |
460 | | // destination. We do not handle cases where source or destination have |
461 | | // multiple SERecurrentExpr nodes. |
462 | 0 | std::vector<SERecurrentNode*> source_recurrent_nodes = |
463 | 0 | source_node->CollectRecurrentNodes(); |
464 | 0 | std::vector<SERecurrentNode*> destination_recurrent_nodes = |
465 | 0 | destination_node->CollectRecurrentNodes(); |
466 | |
|
467 | 0 | if (source_recurrent_nodes.size() == 1 && |
468 | 0 | destination_recurrent_nodes.size() == 1) { |
469 | 0 | PrintDebug("Found source and destination have 1 induction variable."); |
470 | 0 | SERecurrentNode* source_recurrent_expr = *source_recurrent_nodes.begin(); |
471 | 0 | SERecurrentNode* destination_recurrent_expr = |
472 | 0 | *destination_recurrent_nodes.begin(); |
473 | | |
474 | | // If the coefficients are identical we can apply a StrongSIVTest. |
475 | 0 | if (source_recurrent_expr->GetCoefficient() == |
476 | 0 | destination_recurrent_expr->GetCoefficient()) { |
477 | 0 | PrintDebug("Found source and destination share coefficient."); |
478 | 0 | if (StrongSIVTest(source_node, destination_node, |
479 | 0 | source_recurrent_expr->GetCoefficient(), |
480 | 0 | distance_entry)) { |
481 | 0 | PrintDebug("Proved independence with StrongSIVTest"); |
482 | 0 | distance_entry->dependence_information = |
483 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
484 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
485 | 0 | return true; |
486 | 0 | } |
487 | 0 | } |
488 | | |
489 | | // If the coefficients are of equal magnitude and opposite sign we can |
490 | | // apply a WeakCrossingSIVTest. |
491 | 0 | if (source_recurrent_expr->GetCoefficient() == |
492 | 0 | scalar_evolution_.CreateNegation( |
493 | 0 | destination_recurrent_expr->GetCoefficient())) { |
494 | 0 | PrintDebug("Found source coefficient = -destination coefficient."); |
495 | 0 | if (WeakCrossingSIVTest(source_node, destination_node, |
496 | 0 | source_recurrent_expr->GetCoefficient(), |
497 | 0 | distance_entry)) { |
498 | 0 | PrintDebug("Proved independence with WeakCrossingSIVTest"); |
499 | 0 | distance_entry->dependence_information = |
500 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
501 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
502 | 0 | return true; |
503 | 0 | } |
504 | 0 | } |
505 | 0 | } |
506 | | |
507 | 0 | return false; |
508 | 0 | } |
509 | | |
510 | | bool LoopDependenceAnalysis::StrongSIVTest(SENode* source, SENode* destination, |
511 | | SENode* coefficient, |
512 | 0 | DistanceEntry* distance_entry) { |
513 | 0 | PrintDebug("Performing StrongSIVTest."); |
514 | | // If both source and destination are SERecurrentNodes we can perform tests |
515 | | // based on distance. |
516 | | // If either source or destination contain value unknown nodes or if one or |
517 | | // both are not SERecurrentNodes we must attempt a symbolic test. |
518 | 0 | std::vector<SEValueUnknown*> source_value_unknown_nodes = |
519 | 0 | source->CollectValueUnknownNodes(); |
520 | 0 | std::vector<SEValueUnknown*> destination_value_unknown_nodes = |
521 | 0 | destination->CollectValueUnknownNodes(); |
522 | 0 | if (source_value_unknown_nodes.size() > 0 || |
523 | 0 | destination_value_unknown_nodes.size() > 0) { |
524 | 0 | PrintDebug( |
525 | 0 | "StrongSIVTest found symbolics. Will attempt SymbolicStrongSIVTest."); |
526 | 0 | return SymbolicStrongSIVTest(source, destination, coefficient, |
527 | 0 | distance_entry); |
528 | 0 | } |
529 | | |
530 | 0 | if (!source->AsSERecurrentNode() || !destination->AsSERecurrentNode()) { |
531 | 0 | PrintDebug( |
532 | 0 | "StrongSIVTest could not simplify source and destination to " |
533 | 0 | "SERecurrentNodes so will exit."); |
534 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
535 | 0 | return false; |
536 | 0 | } |
537 | | |
538 | | // Build an SENode for distance. |
539 | 0 | std::pair<SENode*, SENode*> subscript_pair = |
540 | 0 | std::make_pair(source, destination); |
541 | 0 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
542 | 0 | SENode* source_constant_term = |
543 | 0 | GetConstantTerm(subscript_loop, source->AsSERecurrentNode()); |
544 | 0 | SENode* destination_constant_term = |
545 | 0 | GetConstantTerm(subscript_loop, destination->AsSERecurrentNode()); |
546 | 0 | if (!source_constant_term || !destination_constant_term) { |
547 | 0 | PrintDebug( |
548 | 0 | "StrongSIVTest could not collect the constant terms of either source " |
549 | 0 | "or destination so will exit."); |
550 | 0 | return false; |
551 | 0 | } |
552 | 0 | SENode* constant_term_delta = |
553 | 0 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateSubtraction( |
554 | 0 | destination_constant_term, source_constant_term)); |
555 | | |
556 | | // Scalar evolution doesn't perform division, so we must fold to constants and |
557 | | // do it manually. |
558 | | // We must check the offset delta and coefficient are constants. |
559 | 0 | int64_t distance = 0; |
560 | 0 | SEConstantNode* delta_constant = constant_term_delta->AsSEConstantNode(); |
561 | 0 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
562 | 0 | if (delta_constant && coefficient_constant) { |
563 | 0 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
564 | 0 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
565 | 0 | PrintDebug( |
566 | 0 | "StrongSIVTest found delta value and coefficient value as constants " |
567 | 0 | "with values:\n" |
568 | 0 | "\tdelta value: " + |
569 | 0 | ToString(delta_value) + |
570 | 0 | "\n\tcoefficient value: " + ToString(coefficient_value) + "\n"); |
571 | | // Check if the distance is not integral to try to prove independence. |
572 | 0 | if (delta_value % coefficient_value != 0) { |
573 | 0 | PrintDebug( |
574 | 0 | "StrongSIVTest proved independence through distance not being an " |
575 | 0 | "integer."); |
576 | 0 | distance_entry->dependence_information = |
577 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
578 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
579 | 0 | return true; |
580 | 0 | } else { |
581 | 0 | distance = delta_value / coefficient_value; |
582 | 0 | PrintDebug("StrongSIV test found distance as " + ToString(distance)); |
583 | 0 | } |
584 | 0 | } else { |
585 | | // If we can't fold delta and coefficient to single values we can't produce |
586 | | // distance. |
587 | | // As a result we can't perform the rest of the pass and must assume |
588 | | // dependence in all directions. |
589 | 0 | PrintDebug("StrongSIVTest could not produce a distance. Must exit."); |
590 | 0 | distance_entry->distance = DistanceEntry::Directions::ALL; |
591 | 0 | return false; |
592 | 0 | } |
593 | | |
594 | | // Next we gather the upper and lower bounds as constants if possible. If |
595 | | // distance > upper_bound - lower_bound we prove independence. |
596 | 0 | SENode* lower_bound = GetLowerBound(subscript_loop); |
597 | 0 | SENode* upper_bound = GetUpperBound(subscript_loop); |
598 | 0 | if (lower_bound && upper_bound) { |
599 | 0 | PrintDebug("StrongSIVTest found bounds."); |
600 | 0 | SENode* bounds = scalar_evolution_.SimplifyExpression( |
601 | 0 | scalar_evolution_.CreateSubtraction(upper_bound, lower_bound)); |
602 | |
|
603 | 0 | if (bounds->GetType() == SENode::SENodeType::Constant) { |
604 | 0 | int64_t bounds_value = bounds->AsSEConstantNode()->FoldToSingleValue(); |
605 | 0 | PrintDebug( |
606 | 0 | "StrongSIVTest found upper_bound - lower_bound as a constant with " |
607 | 0 | "value " + |
608 | 0 | ToString(bounds_value)); |
609 | | |
610 | | // If the absolute value of the distance is > upper bound - lower bound |
611 | | // then we prove independence. |
612 | 0 | if (llabs(distance) > llabs(bounds_value)) { |
613 | 0 | PrintDebug( |
614 | 0 | "StrongSIVTest proved independence through distance escaping the " |
615 | 0 | "loop bounds."); |
616 | 0 | distance_entry->dependence_information = |
617 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
618 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
619 | 0 | distance_entry->distance = distance; |
620 | 0 | return true; |
621 | 0 | } |
622 | 0 | } |
623 | 0 | } else { |
624 | 0 | PrintDebug("StrongSIVTest was unable to gather lower and upper bounds."); |
625 | 0 | } |
626 | | |
627 | | // Otherwise we can get a direction as follows |
628 | | // { < if distance > 0 |
629 | | // direction = { = if distance == 0 |
630 | | // { > if distance < 0 |
631 | 0 | PrintDebug( |
632 | 0 | "StrongSIVTest could not prove independence. Gathering direction " |
633 | 0 | "information."); |
634 | 0 | if (distance > 0) { |
635 | 0 | distance_entry->dependence_information = |
636 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
637 | 0 | distance_entry->direction = DistanceEntry::Directions::LT; |
638 | 0 | distance_entry->distance = distance; |
639 | 0 | return false; |
640 | 0 | } |
641 | 0 | if (distance == 0) { |
642 | 0 | distance_entry->dependence_information = |
643 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
644 | 0 | distance_entry->direction = DistanceEntry::Directions::EQ; |
645 | 0 | distance_entry->distance = 0; |
646 | 0 | return false; |
647 | 0 | } |
648 | 0 | if (distance < 0) { |
649 | 0 | distance_entry->dependence_information = |
650 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
651 | 0 | distance_entry->direction = DistanceEntry::Directions::GT; |
652 | 0 | distance_entry->distance = distance; |
653 | 0 | return false; |
654 | 0 | } |
655 | | |
656 | | // We were unable to prove independence or discern any additional information |
657 | | // Must assume <=> direction. |
658 | 0 | PrintDebug( |
659 | 0 | "StrongSIVTest was unable to determine any dependence information."); |
660 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
661 | 0 | return false; |
662 | 0 | } |
663 | | |
664 | | bool LoopDependenceAnalysis::SymbolicStrongSIVTest( |
665 | | SENode* source, SENode* destination, SENode* coefficient, |
666 | 0 | DistanceEntry* distance_entry) { |
667 | 0 | PrintDebug("Performing SymbolicStrongSIVTest."); |
668 | 0 | SENode* source_destination_delta = scalar_evolution_.SimplifyExpression( |
669 | 0 | scalar_evolution_.CreateSubtraction(source, destination)); |
670 | | // By cancelling out the induction variables by subtracting the source and |
671 | | // destination we can produce an expression of symbolics and constants. This |
672 | | // expression can be compared to the loop bounds to find if the offset is |
673 | | // outwith the bounds. |
674 | 0 | std::pair<SENode*, SENode*> subscript_pair = |
675 | 0 | std::make_pair(source, destination); |
676 | 0 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
677 | 0 | if (IsProvablyOutsideOfLoopBounds(subscript_loop, source_destination_delta, |
678 | 0 | coefficient)) { |
679 | 0 | PrintDebug( |
680 | 0 | "SymbolicStrongSIVTest proved independence through loop bounds."); |
681 | 0 | distance_entry->dependence_information = |
682 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
683 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
684 | 0 | return true; |
685 | 0 | } |
686 | | // We were unable to prove independence or discern any additional information. |
687 | | // Must assume <=> direction. |
688 | 0 | PrintDebug( |
689 | 0 | "SymbolicStrongSIVTest was unable to determine any dependence " |
690 | 0 | "information."); |
691 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
692 | 0 | return false; |
693 | 0 | } |
694 | | |
695 | | bool LoopDependenceAnalysis::WeakZeroSourceSIVTest( |
696 | | SENode* source, SERecurrentNode* destination, SENode* coefficient, |
697 | 0 | DistanceEntry* distance_entry) { |
698 | 0 | PrintDebug("Performing WeakZeroSourceSIVTest."); |
699 | 0 | std::pair<SENode*, SENode*> subscript_pair = |
700 | 0 | std::make_pair(source, destination); |
701 | 0 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
702 | | // Build an SENode for distance. |
703 | 0 | SENode* destination_constant_term = |
704 | 0 | GetConstantTerm(subscript_loop, destination); |
705 | 0 | SENode* delta = scalar_evolution_.SimplifyExpression( |
706 | 0 | scalar_evolution_.CreateSubtraction(source, destination_constant_term)); |
707 | | |
708 | | // Scalar evolution doesn't perform division, so we must fold to constants and |
709 | | // do it manually. |
710 | 0 | int64_t distance = 0; |
711 | 0 | SEConstantNode* delta_constant = delta->AsSEConstantNode(); |
712 | 0 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
713 | 0 | if (delta_constant && coefficient_constant) { |
714 | 0 | PrintDebug( |
715 | 0 | "WeakZeroSourceSIVTest folding delta and coefficient to constants."); |
716 | 0 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
717 | 0 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
718 | | // Check if the distance is not integral. |
719 | 0 | if (delta_value % coefficient_value != 0) { |
720 | 0 | PrintDebug( |
721 | 0 | "WeakZeroSourceSIVTest proved independence through distance not " |
722 | 0 | "being an integer."); |
723 | 0 | distance_entry->dependence_information = |
724 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
725 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
726 | 0 | return true; |
727 | 0 | } else { |
728 | 0 | distance = delta_value / coefficient_value; |
729 | 0 | PrintDebug( |
730 | 0 | "WeakZeroSourceSIVTest calculated distance with the following " |
731 | 0 | "values\n" |
732 | 0 | "\tdelta value: " + |
733 | 0 | ToString(delta_value) + |
734 | 0 | "\n\tcoefficient value: " + ToString(coefficient_value) + |
735 | 0 | "\n\tdistance: " + ToString(distance) + "\n"); |
736 | 0 | } |
737 | 0 | } else { |
738 | 0 | PrintDebug( |
739 | 0 | "WeakZeroSourceSIVTest was unable to fold delta and coefficient to " |
740 | 0 | "constants."); |
741 | 0 | } |
742 | | |
743 | | // If we can prove the distance is outside the bounds we prove independence. |
744 | 0 | SEConstantNode* lower_bound = |
745 | 0 | GetLowerBound(subscript_loop)->AsSEConstantNode(); |
746 | 0 | SEConstantNode* upper_bound = |
747 | 0 | GetUpperBound(subscript_loop)->AsSEConstantNode(); |
748 | 0 | if (lower_bound && upper_bound) { |
749 | 0 | PrintDebug("WeakZeroSourceSIVTest found bounds as SEConstantNodes."); |
750 | 0 | int64_t lower_bound_value = lower_bound->FoldToSingleValue(); |
751 | 0 | int64_t upper_bound_value = upper_bound->FoldToSingleValue(); |
752 | 0 | if (!IsWithinBounds(llabs(distance), lower_bound_value, |
753 | 0 | upper_bound_value)) { |
754 | 0 | PrintDebug( |
755 | 0 | "WeakZeroSourceSIVTest proved independence through distance escaping " |
756 | 0 | "the loop bounds."); |
757 | 0 | PrintDebug( |
758 | 0 | "Bound values were as follow\n" |
759 | 0 | "\tlower bound value: " + |
760 | 0 | ToString(lower_bound_value) + |
761 | 0 | "\n\tupper bound value: " + ToString(upper_bound_value) + |
762 | 0 | "\n\tdistance value: " + ToString(distance) + "\n"); |
763 | 0 | distance_entry->dependence_information = |
764 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
765 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
766 | 0 | distance_entry->distance = distance; |
767 | 0 | return true; |
768 | 0 | } |
769 | 0 | } else { |
770 | 0 | PrintDebug( |
771 | 0 | "WeakZeroSourceSIVTest was unable to find lower and upper bound as " |
772 | 0 | "SEConstantNodes."); |
773 | 0 | } |
774 | | |
775 | | // Now we want to see if we can detect to peel the first or last iterations. |
776 | | |
777 | | // We get the FirstTripValue as GetFirstTripInductionNode() + |
778 | | // GetConstantTerm(destination) |
779 | 0 | SENode* first_trip_SENode = |
780 | 0 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
781 | 0 | GetFirstTripInductionNode(subscript_loop), |
782 | 0 | GetConstantTerm(subscript_loop, destination))); |
783 | | |
784 | | // If source == FirstTripValue, peel_first. |
785 | 0 | if (first_trip_SENode) { |
786 | 0 | PrintDebug("WeakZeroSourceSIVTest built first_trip_SENode."); |
787 | 0 | if (first_trip_SENode->AsSEConstantNode()) { |
788 | 0 | PrintDebug( |
789 | 0 | "WeakZeroSourceSIVTest has found first_trip_SENode as an " |
790 | 0 | "SEConstantNode with value: " + |
791 | 0 | ToString(first_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
792 | 0 | "\n"); |
793 | 0 | } |
794 | 0 | if (source == first_trip_SENode) { |
795 | | // We have found that peeling the first iteration will break dependency. |
796 | 0 | PrintDebug( |
797 | 0 | "WeakZeroSourceSIVTest has found peeling first iteration will break " |
798 | 0 | "dependency"); |
799 | 0 | distance_entry->dependence_information = |
800 | 0 | DistanceEntry::DependenceInformation::PEEL; |
801 | 0 | distance_entry->peel_first = true; |
802 | 0 | return false; |
803 | 0 | } |
804 | 0 | } else { |
805 | 0 | PrintDebug("WeakZeroSourceSIVTest was unable to build first_trip_SENode"); |
806 | 0 | } |
807 | | |
808 | | // We get the LastTripValue as GetFinalTripInductionNode(coefficient) + |
809 | | // GetConstantTerm(destination) |
810 | 0 | SENode* final_trip_SENode = |
811 | 0 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
812 | 0 | GetFinalTripInductionNode(subscript_loop, coefficient), |
813 | 0 | GetConstantTerm(subscript_loop, destination))); |
814 | | |
815 | | // If source == LastTripValue, peel_last. |
816 | 0 | if (final_trip_SENode) { |
817 | 0 | PrintDebug("WeakZeroSourceSIVTest built final_trip_SENode."); |
818 | 0 | if (first_trip_SENode->AsSEConstantNode()) { |
819 | 0 | PrintDebug( |
820 | 0 | "WeakZeroSourceSIVTest has found final_trip_SENode as an " |
821 | 0 | "SEConstantNode with value: " + |
822 | 0 | ToString(final_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
823 | 0 | "\n"); |
824 | 0 | } |
825 | 0 | if (source == final_trip_SENode) { |
826 | | // We have found that peeling the last iteration will break dependency. |
827 | 0 | PrintDebug( |
828 | 0 | "WeakZeroSourceSIVTest has found peeling final iteration will break " |
829 | 0 | "dependency"); |
830 | 0 | distance_entry->dependence_information = |
831 | 0 | DistanceEntry::DependenceInformation::PEEL; |
832 | 0 | distance_entry->peel_last = true; |
833 | 0 | return false; |
834 | 0 | } |
835 | 0 | } else { |
836 | 0 | PrintDebug("WeakZeroSourceSIVTest was unable to build final_trip_SENode"); |
837 | 0 | } |
838 | | |
839 | | // We were unable to prove independence or discern any additional information. |
840 | | // Must assume <=> direction. |
841 | 0 | PrintDebug( |
842 | 0 | "WeakZeroSourceSIVTest was unable to determine any dependence " |
843 | 0 | "information."); |
844 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
845 | 0 | return false; |
846 | 0 | } |
847 | | |
848 | | bool LoopDependenceAnalysis::WeakZeroDestinationSIVTest( |
849 | | SERecurrentNode* source, SENode* destination, SENode* coefficient, |
850 | 0 | DistanceEntry* distance_entry) { |
851 | 0 | PrintDebug("Performing WeakZeroDestinationSIVTest."); |
852 | | // Build an SENode for distance. |
853 | 0 | std::pair<SENode*, SENode*> subscript_pair = |
854 | 0 | std::make_pair(source, destination); |
855 | 0 | const Loop* subscript_loop = GetLoopForSubscriptPair(subscript_pair); |
856 | 0 | SENode* source_constant_term = GetConstantTerm(subscript_loop, source); |
857 | 0 | SENode* delta = scalar_evolution_.SimplifyExpression( |
858 | 0 | scalar_evolution_.CreateSubtraction(destination, source_constant_term)); |
859 | | |
860 | | // Scalar evolution doesn't perform division, so we must fold to constants and |
861 | | // do it manually. |
862 | 0 | int64_t distance = 0; |
863 | 0 | SEConstantNode* delta_constant = delta->AsSEConstantNode(); |
864 | 0 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
865 | 0 | if (delta_constant && coefficient_constant) { |
866 | 0 | PrintDebug( |
867 | 0 | "WeakZeroDestinationSIVTest folding delta and coefficient to " |
868 | 0 | "constants."); |
869 | 0 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
870 | 0 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
871 | | // Check if the distance is not integral. |
872 | 0 | if (delta_value % coefficient_value != 0) { |
873 | 0 | PrintDebug( |
874 | 0 | "WeakZeroDestinationSIVTest proved independence through distance not " |
875 | 0 | "being an integer."); |
876 | 0 | distance_entry->dependence_information = |
877 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
878 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
879 | 0 | return true; |
880 | 0 | } else { |
881 | 0 | distance = delta_value / coefficient_value; |
882 | 0 | PrintDebug( |
883 | 0 | "WeakZeroDestinationSIVTest calculated distance with the following " |
884 | 0 | "values\n" |
885 | 0 | "\tdelta value: " + |
886 | 0 | ToString(delta_value) + |
887 | 0 | "\n\tcoefficient value: " + ToString(coefficient_value) + |
888 | 0 | "\n\tdistance: " + ToString(distance) + "\n"); |
889 | 0 | } |
890 | 0 | } else { |
891 | 0 | PrintDebug( |
892 | 0 | "WeakZeroDestinationSIVTest was unable to fold delta and coefficient " |
893 | 0 | "to constants."); |
894 | 0 | } |
895 | | |
896 | | // If we can prove the distance is outside the bounds we prove independence. |
897 | 0 | SEConstantNode* lower_bound = |
898 | 0 | GetLowerBound(subscript_loop)->AsSEConstantNode(); |
899 | 0 | SEConstantNode* upper_bound = |
900 | 0 | GetUpperBound(subscript_loop)->AsSEConstantNode(); |
901 | 0 | if (lower_bound && upper_bound) { |
902 | 0 | PrintDebug("WeakZeroDestinationSIVTest found bounds as SEConstantNodes."); |
903 | 0 | int64_t lower_bound_value = lower_bound->FoldToSingleValue(); |
904 | 0 | int64_t upper_bound_value = upper_bound->FoldToSingleValue(); |
905 | 0 | if (!IsWithinBounds(llabs(distance), lower_bound_value, |
906 | 0 | upper_bound_value)) { |
907 | 0 | PrintDebug( |
908 | 0 | "WeakZeroDestinationSIVTest proved independence through distance " |
909 | 0 | "escaping the loop bounds."); |
910 | 0 | PrintDebug( |
911 | 0 | "Bound values were as follows\n" |
912 | 0 | "\tlower bound value: " + |
913 | 0 | ToString(lower_bound_value) + |
914 | 0 | "\n\tupper bound value: " + ToString(upper_bound_value) + |
915 | 0 | "\n\tdistance value: " + ToString(distance)); |
916 | 0 | distance_entry->dependence_information = |
917 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
918 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
919 | 0 | distance_entry->distance = distance; |
920 | 0 | return true; |
921 | 0 | } |
922 | 0 | } else { |
923 | 0 | PrintDebug( |
924 | 0 | "WeakZeroDestinationSIVTest was unable to find lower and upper bound " |
925 | 0 | "as SEConstantNodes."); |
926 | 0 | } |
927 | | |
928 | | // Now we want to see if we can detect to peel the first or last iterations. |
929 | | |
930 | | // We get the FirstTripValue as GetFirstTripInductionNode() + |
931 | | // GetConstantTerm(source) |
932 | 0 | SENode* first_trip_SENode = scalar_evolution_.SimplifyExpression( |
933 | 0 | scalar_evolution_.CreateAddNode(GetFirstTripInductionNode(subscript_loop), |
934 | 0 | GetConstantTerm(subscript_loop, source))); |
935 | | |
936 | | // If destination == FirstTripValue, peel_first. |
937 | 0 | if (first_trip_SENode) { |
938 | 0 | PrintDebug("WeakZeroDestinationSIVTest built first_trip_SENode."); |
939 | 0 | if (first_trip_SENode->AsSEConstantNode()) { |
940 | 0 | PrintDebug( |
941 | 0 | "WeakZeroDestinationSIVTest has found first_trip_SENode as an " |
942 | 0 | "SEConstantNode with value: " + |
943 | 0 | ToString(first_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
944 | 0 | "\n"); |
945 | 0 | } |
946 | 0 | if (destination == first_trip_SENode) { |
947 | | // We have found that peeling the first iteration will break dependency. |
948 | 0 | PrintDebug( |
949 | 0 | "WeakZeroDestinationSIVTest has found peeling first iteration will " |
950 | 0 | "break dependency"); |
951 | 0 | distance_entry->dependence_information = |
952 | 0 | DistanceEntry::DependenceInformation::PEEL; |
953 | 0 | distance_entry->peel_first = true; |
954 | 0 | return false; |
955 | 0 | } |
956 | 0 | } else { |
957 | 0 | PrintDebug( |
958 | 0 | "WeakZeroDestinationSIVTest was unable to build first_trip_SENode"); |
959 | 0 | } |
960 | | |
961 | | // We get the LastTripValue as GetFinalTripInductionNode(coefficient) + |
962 | | // GetConstantTerm(source) |
963 | 0 | SENode* final_trip_SENode = |
964 | 0 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateAddNode( |
965 | 0 | GetFinalTripInductionNode(subscript_loop, coefficient), |
966 | 0 | GetConstantTerm(subscript_loop, source))); |
967 | | |
968 | | // If destination == LastTripValue, peel_last. |
969 | 0 | if (final_trip_SENode) { |
970 | 0 | PrintDebug("WeakZeroDestinationSIVTest built final_trip_SENode."); |
971 | 0 | if (final_trip_SENode->AsSEConstantNode()) { |
972 | 0 | PrintDebug( |
973 | 0 | "WeakZeroDestinationSIVTest has found final_trip_SENode as an " |
974 | 0 | "SEConstantNode with value: " + |
975 | 0 | ToString(final_trip_SENode->AsSEConstantNode()->FoldToSingleValue()) + |
976 | 0 | "\n"); |
977 | 0 | } |
978 | 0 | if (destination == final_trip_SENode) { |
979 | | // We have found that peeling the last iteration will break dependency. |
980 | 0 | PrintDebug( |
981 | 0 | "WeakZeroDestinationSIVTest has found peeling final iteration will " |
982 | 0 | "break dependency"); |
983 | 0 | distance_entry->dependence_information = |
984 | 0 | DistanceEntry::DependenceInformation::PEEL; |
985 | 0 | distance_entry->peel_last = true; |
986 | 0 | return false; |
987 | 0 | } |
988 | 0 | } else { |
989 | 0 | PrintDebug( |
990 | 0 | "WeakZeroDestinationSIVTest was unable to build final_trip_SENode"); |
991 | 0 | } |
992 | | |
993 | | // We were unable to prove independence or discern any additional information. |
994 | | // Must assume <=> direction. |
995 | 0 | PrintDebug( |
996 | 0 | "WeakZeroDestinationSIVTest was unable to determine any dependence " |
997 | 0 | "information."); |
998 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
999 | 0 | return false; |
1000 | 0 | } |
1001 | | |
1002 | | bool LoopDependenceAnalysis::WeakCrossingSIVTest( |
1003 | | SENode* source, SENode* destination, SENode* coefficient, |
1004 | 0 | DistanceEntry* distance_entry) { |
1005 | 0 | PrintDebug("Performing WeakCrossingSIVTest."); |
1006 | | // We currently can't handle symbolic WeakCrossingSIVTests. If either source |
1007 | | // or destination are not SERecurrentNodes we must exit. |
1008 | 0 | if (!source->AsSERecurrentNode() || !destination->AsSERecurrentNode()) { |
1009 | 0 | PrintDebug( |
1010 | 0 | "WeakCrossingSIVTest found source or destination != SERecurrentNode. " |
1011 | 0 | "Exiting"); |
1012 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
1013 | 0 | return false; |
1014 | 0 | } |
1015 | | |
1016 | | // Build an SENode for distance. |
1017 | 0 | SENode* offset_delta = |
1018 | 0 | scalar_evolution_.SimplifyExpression(scalar_evolution_.CreateSubtraction( |
1019 | 0 | destination->AsSERecurrentNode()->GetOffset(), |
1020 | 0 | source->AsSERecurrentNode()->GetOffset())); |
1021 | | |
1022 | | // Scalar evolution doesn't perform division, so we must fold to constants and |
1023 | | // do it manually. |
1024 | 0 | int64_t distance = 0; |
1025 | 0 | SEConstantNode* delta_constant = offset_delta->AsSEConstantNode(); |
1026 | 0 | SEConstantNode* coefficient_constant = coefficient->AsSEConstantNode(); |
1027 | 0 | if (delta_constant && coefficient_constant) { |
1028 | 0 | PrintDebug( |
1029 | 0 | "WeakCrossingSIVTest folding offset_delta and coefficient to " |
1030 | 0 | "constants."); |
1031 | 0 | int64_t delta_value = delta_constant->FoldToSingleValue(); |
1032 | 0 | int64_t coefficient_value = coefficient_constant->FoldToSingleValue(); |
1033 | | // Check if the distance is not integral or if it has a non-integral part |
1034 | | // equal to 1/2. |
1035 | 0 | if (delta_value % (2 * coefficient_value) != 0 && |
1036 | 0 | static_cast<float>(delta_value % (2 * coefficient_value)) / |
1037 | 0 | static_cast<float>(2 * coefficient_value) != |
1038 | 0 | 0.5) { |
1039 | 0 | PrintDebug( |
1040 | 0 | "WeakCrossingSIVTest proved independence through distance escaping " |
1041 | 0 | "the loop bounds."); |
1042 | 0 | distance_entry->dependence_information = |
1043 | 0 | DistanceEntry::DependenceInformation::DIRECTION; |
1044 | 0 | distance_entry->direction = DistanceEntry::Directions::NONE; |
1045 | 0 | return true; |
1046 | 0 | } else { |
1047 | 0 | distance = delta_value / (2 * coefficient_value); |
1048 | 0 | } |
1049 | | |
1050 | 0 | if (distance == 0) { |
1051 | 0 | PrintDebug("WeakCrossingSIVTest found EQ dependence."); |
1052 | 0 | distance_entry->dependence_information = |
1053 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
1054 | 0 | distance_entry->direction = DistanceEntry::Directions::EQ; |
1055 | 0 | distance_entry->distance = 0; |
1056 | 0 | return false; |
1057 | 0 | } |
1058 | 0 | } else { |
1059 | 0 | PrintDebug( |
1060 | 0 | "WeakCrossingSIVTest was unable to fold offset_delta and coefficient " |
1061 | 0 | "to constants."); |
1062 | 0 | } |
1063 | | |
1064 | | // We were unable to prove independence or discern any additional information. |
1065 | | // Must assume <=> direction. |
1066 | 0 | PrintDebug( |
1067 | 0 | "WeakCrossingSIVTest was unable to determine any dependence " |
1068 | 0 | "information."); |
1069 | 0 | distance_entry->direction = DistanceEntry::Directions::ALL; |
1070 | 0 | return false; |
1071 | 0 | } |
1072 | | |
1073 | | // Perform the GCD test if both, the source and the destination nodes, are in |
1074 | | // the form a0*i0 + a1*i1 + ... an*in + c. |
1075 | | bool LoopDependenceAnalysis::GCDMIVTest( |
1076 | 0 | const std::pair<SENode*, SENode*>& subscript_pair) { |
1077 | 0 | auto source = std::get<0>(subscript_pair); |
1078 | 0 | auto destination = std::get<1>(subscript_pair); |
1079 | | |
1080 | | // Bail out if source/destination is in an unexpected form. |
1081 | 0 | if (!IsInCorrectFormForGCDTest(source) || |
1082 | 0 | !IsInCorrectFormForGCDTest(destination)) { |
1083 | 0 | return false; |
1084 | 0 | } |
1085 | | |
1086 | 0 | auto source_recurrences = GetAllTopLevelRecurrences(source); |
1087 | 0 | auto dest_recurrences = GetAllTopLevelRecurrences(destination); |
1088 | | |
1089 | | // Bail out if all offsets and coefficients aren't constant. |
1090 | 0 | if (!AreOffsetsAndCoefficientsConstant(source_recurrences) || |
1091 | 0 | !AreOffsetsAndCoefficientsConstant(dest_recurrences)) { |
1092 | 0 | return false; |
1093 | 0 | } |
1094 | | |
1095 | | // Calculate the GCD of all coefficients. |
1096 | 0 | auto source_constants = GetAllTopLevelConstants(source); |
1097 | 0 | int64_t source_constant = |
1098 | 0 | CalculateConstantTerm(source_recurrences, source_constants); |
1099 | |
|
1100 | 0 | auto dest_constants = GetAllTopLevelConstants(destination); |
1101 | 0 | int64_t destination_constant = |
1102 | 0 | CalculateConstantTerm(dest_recurrences, dest_constants); |
1103 | |
|
1104 | 0 | int64_t delta = std::abs(source_constant - destination_constant); |
1105 | |
|
1106 | 0 | int64_t running_gcd = 0; |
1107 | |
|
1108 | 0 | running_gcd = CalculateGCDFromCoefficients(source_recurrences, running_gcd); |
1109 | 0 | running_gcd = CalculateGCDFromCoefficients(dest_recurrences, running_gcd); |
1110 | |
|
1111 | 0 | return delta % running_gcd != 0; |
1112 | 0 | } |
1113 | | |
1114 | | using PartitionedSubscripts = |
1115 | | std::vector<std::set<std::pair<Instruction*, Instruction*>>>; |
1116 | | PartitionedSubscripts LoopDependenceAnalysis::PartitionSubscripts( |
1117 | | const std::vector<Instruction*>& source_subscripts, |
1118 | 0 | const std::vector<Instruction*>& destination_subscripts) { |
1119 | 0 | PartitionedSubscripts partitions{}; |
1120 | |
|
1121 | 0 | auto num_subscripts = source_subscripts.size(); |
1122 | | |
1123 | | // Create initial partitions with one subscript pair per partition. |
1124 | 0 | for (size_t i = 0; i < num_subscripts; ++i) { |
1125 | 0 | partitions.push_back({{source_subscripts[i], destination_subscripts[i]}}); |
1126 | 0 | } |
1127 | | |
1128 | | // Iterate over the loops to create all partitions |
1129 | 0 | for (auto loop : loops_) { |
1130 | 0 | int64_t k = -1; |
1131 | |
|
1132 | 0 | for (size_t j = 0; j < partitions.size(); ++j) { |
1133 | 0 | auto& current_partition = partitions[j]; |
1134 | | |
1135 | | // Does |loop| appear in |current_partition| |
1136 | 0 | auto it = std::find_if( |
1137 | 0 | current_partition.begin(), current_partition.end(), |
1138 | 0 | [loop, |
1139 | 0 | this](const std::pair<Instruction*, Instruction*>& elem) -> bool { |
1140 | 0 | auto source_recurrences = |
1141 | 0 | scalar_evolution_.AnalyzeInstruction(std::get<0>(elem)) |
1142 | 0 | ->CollectRecurrentNodes(); |
1143 | 0 | auto destination_recurrences = |
1144 | 0 | scalar_evolution_.AnalyzeInstruction(std::get<1>(elem)) |
1145 | 0 | ->CollectRecurrentNodes(); |
1146 | |
|
1147 | 0 | source_recurrences.insert(source_recurrences.end(), |
1148 | 0 | destination_recurrences.begin(), |
1149 | 0 | destination_recurrences.end()); |
1150 | |
|
1151 | 0 | auto loops_in_pair = CollectLoops(source_recurrences); |
1152 | 0 | auto end_it = loops_in_pair.end(); |
1153 | |
|
1154 | 0 | return std::find(loops_in_pair.begin(), end_it, loop) != end_it; |
1155 | 0 | }); |
1156 | |
|
1157 | 0 | auto has_loop = it != current_partition.end(); |
1158 | |
|
1159 | 0 | if (has_loop) { |
1160 | 0 | if (k == -1) { |
1161 | 0 | k = j; |
1162 | 0 | } else { |
1163 | | // Add |partitions[j]| to |partitions[k]| and discard |partitions[j]| |
1164 | 0 | partitions[static_cast<size_t>(k)].insert(current_partition.begin(), |
1165 | 0 | current_partition.end()); |
1166 | 0 | current_partition.clear(); |
1167 | 0 | } |
1168 | 0 | } |
1169 | 0 | } |
1170 | 0 | } |
1171 | | |
1172 | | // Remove empty (discarded) partitions |
1173 | 0 | partitions.erase( |
1174 | 0 | std::remove_if( |
1175 | 0 | partitions.begin(), partitions.end(), |
1176 | 0 | [](const std::set<std::pair<Instruction*, Instruction*>>& partition) { |
1177 | 0 | return partition.empty(); |
1178 | 0 | }), |
1179 | 0 | partitions.end()); |
1180 | |
|
1181 | 0 | return partitions; |
1182 | 0 | } |
1183 | | |
1184 | | Constraint* LoopDependenceAnalysis::IntersectConstraints( |
1185 | | Constraint* constraint_0, Constraint* constraint_1, |
1186 | 0 | const SENode* lower_bound, const SENode* upper_bound) { |
1187 | 0 | if (constraint_0->AsDependenceNone()) { |
1188 | 0 | return constraint_1; |
1189 | 0 | } else if (constraint_1->AsDependenceNone()) { |
1190 | 0 | return constraint_0; |
1191 | 0 | } |
1192 | | |
1193 | | // Both constraints are distances. Either the same distance or independent. |
1194 | 0 | if (constraint_0->AsDependenceDistance() && |
1195 | 0 | constraint_1->AsDependenceDistance()) { |
1196 | 0 | auto dist_0 = constraint_0->AsDependenceDistance(); |
1197 | 0 | auto dist_1 = constraint_1->AsDependenceDistance(); |
1198 | |
|
1199 | 0 | if (*dist_0->GetDistance() == *dist_1->GetDistance()) { |
1200 | 0 | return constraint_0; |
1201 | 0 | } else { |
1202 | 0 | return make_constraint<DependenceEmpty>(); |
1203 | 0 | } |
1204 | 0 | } |
1205 | | |
1206 | | // Both constraints are points. Either the same point or independent. |
1207 | 0 | if (constraint_0->AsDependencePoint() && constraint_1->AsDependencePoint()) { |
1208 | 0 | auto point_0 = constraint_0->AsDependencePoint(); |
1209 | 0 | auto point_1 = constraint_1->AsDependencePoint(); |
1210 | |
|
1211 | 0 | if (*point_0->GetSource() == *point_1->GetSource() && |
1212 | 0 | *point_0->GetDestination() == *point_1->GetDestination()) { |
1213 | 0 | return constraint_0; |
1214 | 0 | } else { |
1215 | 0 | return make_constraint<DependenceEmpty>(); |
1216 | 0 | } |
1217 | 0 | } |
1218 | | |
1219 | | // Both constraints are lines/distances. |
1220 | 0 | if ((constraint_0->AsDependenceDistance() || |
1221 | 0 | constraint_0->AsDependenceLine()) && |
1222 | 0 | (constraint_1->AsDependenceDistance() || |
1223 | 0 | constraint_1->AsDependenceLine())) { |
1224 | 0 | auto is_distance_0 = constraint_0->AsDependenceDistance() != nullptr; |
1225 | 0 | auto is_distance_1 = constraint_1->AsDependenceDistance() != nullptr; |
1226 | |
|
1227 | 0 | auto a0 = is_distance_0 ? scalar_evolution_.CreateConstant(1) |
1228 | 0 | : constraint_0->AsDependenceLine()->GetA(); |
1229 | 0 | auto b0 = is_distance_0 ? scalar_evolution_.CreateConstant(-1) |
1230 | 0 | : constraint_0->AsDependenceLine()->GetB(); |
1231 | 0 | auto c0 = |
1232 | 0 | is_distance_0 |
1233 | 0 | ? scalar_evolution_.SimplifyExpression( |
1234 | 0 | scalar_evolution_.CreateNegation( |
1235 | 0 | constraint_0->AsDependenceDistance()->GetDistance())) |
1236 | 0 | : constraint_0->AsDependenceLine()->GetC(); |
1237 | |
|
1238 | 0 | auto a1 = is_distance_1 ? scalar_evolution_.CreateConstant(1) |
1239 | 0 | : constraint_1->AsDependenceLine()->GetA(); |
1240 | 0 | auto b1 = is_distance_1 ? scalar_evolution_.CreateConstant(-1) |
1241 | 0 | : constraint_1->AsDependenceLine()->GetB(); |
1242 | 0 | auto c1 = |
1243 | 0 | is_distance_1 |
1244 | 0 | ? scalar_evolution_.SimplifyExpression( |
1245 | 0 | scalar_evolution_.CreateNegation( |
1246 | 0 | constraint_1->AsDependenceDistance()->GetDistance())) |
1247 | 0 | : constraint_1->AsDependenceLine()->GetC(); |
1248 | |
|
1249 | 0 | if (a0->AsSEConstantNode() && b0->AsSEConstantNode() && |
1250 | 0 | c0->AsSEConstantNode() && a1->AsSEConstantNode() && |
1251 | 0 | b1->AsSEConstantNode() && c1->AsSEConstantNode()) { |
1252 | 0 | auto constant_a0 = a0->AsSEConstantNode()->FoldToSingleValue(); |
1253 | 0 | auto constant_b0 = b0->AsSEConstantNode()->FoldToSingleValue(); |
1254 | 0 | auto constant_c0 = c0->AsSEConstantNode()->FoldToSingleValue(); |
1255 | |
|
1256 | 0 | auto constant_a1 = a1->AsSEConstantNode()->FoldToSingleValue(); |
1257 | 0 | auto constant_b1 = b1->AsSEConstantNode()->FoldToSingleValue(); |
1258 | 0 | auto constant_c1 = c1->AsSEConstantNode()->FoldToSingleValue(); |
1259 | | |
1260 | | // a & b can't both be zero, otherwise it wouldn't be line. |
1261 | 0 | if (NormalizeAndCompareFractions(constant_a0, constant_b0, constant_a1, |
1262 | 0 | constant_b1)) { |
1263 | | // Slopes are equal, either parallel lines or the same line. |
1264 | |
|
1265 | 0 | if (constant_b0 == 0 && constant_b1 == 0) { |
1266 | 0 | if (NormalizeAndCompareFractions(constant_c0, constant_a0, |
1267 | 0 | constant_c1, constant_a1)) { |
1268 | 0 | return constraint_0; |
1269 | 0 | } |
1270 | | |
1271 | 0 | return make_constraint<DependenceEmpty>(); |
1272 | 0 | } else if (NormalizeAndCompareFractions(constant_c0, constant_b0, |
1273 | 0 | constant_c1, constant_b1)) { |
1274 | | // Same line. |
1275 | 0 | return constraint_0; |
1276 | 0 | } else { |
1277 | | // Parallel lines can't intersect, report independence. |
1278 | 0 | return make_constraint<DependenceEmpty>(); |
1279 | 0 | } |
1280 | |
|
1281 | 0 | } else { |
1282 | | // Lines are not parallel, therefore, they must intersect. |
1283 | | |
1284 | | // Calculate intersection. |
1285 | 0 | if (upper_bound->AsSEConstantNode() && |
1286 | 0 | lower_bound->AsSEConstantNode()) { |
1287 | 0 | auto constant_lower_bound = |
1288 | 0 | lower_bound->AsSEConstantNode()->FoldToSingleValue(); |
1289 | 0 | auto constant_upper_bound = |
1290 | 0 | upper_bound->AsSEConstantNode()->FoldToSingleValue(); |
1291 | |
|
1292 | 0 | auto up = constant_b1 * constant_c0 - constant_b0 * constant_c1; |
1293 | | // Both b or both a can't be 0, so down is never 0 |
1294 | | // otherwise would have entered the parallel line section. |
1295 | 0 | auto down = constant_b1 * constant_a0 - constant_b0 * constant_a1; |
1296 | |
|
1297 | 0 | auto x_coord = up / down; |
1298 | |
|
1299 | 0 | int64_t y_coord = 0; |
1300 | 0 | int64_t arg1 = 0; |
1301 | 0 | int64_t const_b_to_use = 0; |
1302 | |
|
1303 | 0 | if (constant_b1 != 0) { |
1304 | 0 | arg1 = constant_c1 - constant_a1 * x_coord; |
1305 | 0 | y_coord = arg1 / constant_b1; |
1306 | 0 | const_b_to_use = constant_b1; |
1307 | 0 | } else if (constant_b0 != 0) { |
1308 | 0 | arg1 = constant_c0 - constant_a0 * x_coord; |
1309 | 0 | y_coord = arg1 / constant_b0; |
1310 | 0 | const_b_to_use = constant_b0; |
1311 | 0 | } |
1312 | |
|
1313 | 0 | if (up % down == 0 && |
1314 | 0 | arg1 % const_b_to_use == 0 && // Coordinates are integers. |
1315 | 0 | constant_lower_bound <= |
1316 | 0 | x_coord && // x_coord is within loop bounds. |
1317 | 0 | x_coord <= constant_upper_bound && |
1318 | 0 | constant_lower_bound <= |
1319 | 0 | y_coord && // y_coord is within loop bounds. |
1320 | 0 | y_coord <= constant_upper_bound) { |
1321 | | // Lines intersect at integer coordinates. |
1322 | 0 | return make_constraint<DependencePoint>( |
1323 | 0 | scalar_evolution_.CreateConstant(x_coord), |
1324 | 0 | scalar_evolution_.CreateConstant(y_coord), |
1325 | 0 | constraint_0->GetLoop()); |
1326 | |
|
1327 | 0 | } else { |
1328 | 0 | return make_constraint<DependenceEmpty>(); |
1329 | 0 | } |
1330 | |
|
1331 | 0 | } else { |
1332 | | // Not constants, bail out. |
1333 | 0 | return make_constraint<DependenceNone>(); |
1334 | 0 | } |
1335 | 0 | } |
1336 | |
|
1337 | 0 | } else { |
1338 | | // Not constants, bail out. |
1339 | 0 | return make_constraint<DependenceNone>(); |
1340 | 0 | } |
1341 | 0 | } |
1342 | | |
1343 | | // One constraint is a line/distance and the other is a point. |
1344 | 0 | if ((constraint_0->AsDependencePoint() && |
1345 | 0 | (constraint_1->AsDependenceLine() || |
1346 | 0 | constraint_1->AsDependenceDistance())) || |
1347 | 0 | (constraint_1->AsDependencePoint() && |
1348 | 0 | (constraint_0->AsDependenceLine() || |
1349 | 0 | constraint_0->AsDependenceDistance()))) { |
1350 | 0 | auto point_0 = constraint_0->AsDependencePoint() != nullptr; |
1351 | |
|
1352 | 0 | auto point = point_0 ? constraint_0->AsDependencePoint() |
1353 | 0 | : constraint_1->AsDependencePoint(); |
1354 | |
|
1355 | 0 | auto line_or_distance = point_0 ? constraint_1 : constraint_0; |
1356 | |
|
1357 | 0 | auto is_distance = line_or_distance->AsDependenceDistance() != nullptr; |
1358 | |
|
1359 | 0 | auto a = is_distance ? scalar_evolution_.CreateConstant(1) |
1360 | 0 | : line_or_distance->AsDependenceLine()->GetA(); |
1361 | 0 | auto b = is_distance ? scalar_evolution_.CreateConstant(-1) |
1362 | 0 | : line_or_distance->AsDependenceLine()->GetB(); |
1363 | 0 | auto c = |
1364 | 0 | is_distance |
1365 | 0 | ? scalar_evolution_.SimplifyExpression( |
1366 | 0 | scalar_evolution_.CreateNegation( |
1367 | 0 | line_or_distance->AsDependenceDistance()->GetDistance())) |
1368 | 0 | : line_or_distance->AsDependenceLine()->GetC(); |
1369 | |
|
1370 | 0 | auto x = point->GetSource(); |
1371 | 0 | auto y = point->GetDestination(); |
1372 | |
|
1373 | 0 | if (a->AsSEConstantNode() && b->AsSEConstantNode() && |
1374 | 0 | c->AsSEConstantNode() && x->AsSEConstantNode() && |
1375 | 0 | y->AsSEConstantNode()) { |
1376 | 0 | auto constant_a = a->AsSEConstantNode()->FoldToSingleValue(); |
1377 | 0 | auto constant_b = b->AsSEConstantNode()->FoldToSingleValue(); |
1378 | 0 | auto constant_c = c->AsSEConstantNode()->FoldToSingleValue(); |
1379 | |
|
1380 | 0 | auto constant_x = x->AsSEConstantNode()->FoldToSingleValue(); |
1381 | 0 | auto constant_y = y->AsSEConstantNode()->FoldToSingleValue(); |
1382 | |
|
1383 | 0 | auto left_hand_side = constant_a * constant_x + constant_b * constant_y; |
1384 | |
|
1385 | 0 | if (left_hand_side == constant_c) { |
1386 | | // Point is on line, return point |
1387 | 0 | return point_0 ? constraint_0 : constraint_1; |
1388 | 0 | } else { |
1389 | | // Point not on line, report independence (empty constraint). |
1390 | 0 | return make_constraint<DependenceEmpty>(); |
1391 | 0 | } |
1392 | |
|
1393 | 0 | } else { |
1394 | | // Not constants, bail out. |
1395 | 0 | return make_constraint<DependenceNone>(); |
1396 | 0 | } |
1397 | 0 | } |
1398 | | |
1399 | 0 | return nullptr; |
1400 | 0 | } |
1401 | | |
1402 | | // Propagate constraints function as described in section 5 of Practical |
1403 | | // Dependence Testing, Goff, Kennedy, Tseng, 1991. |
1404 | | SubscriptPair LoopDependenceAnalysis::PropagateConstraints( |
1405 | | const SubscriptPair& subscript_pair, |
1406 | 0 | const std::vector<Constraint*>& constraints) { |
1407 | 0 | SENode* new_first = subscript_pair.first; |
1408 | 0 | SENode* new_second = subscript_pair.second; |
1409 | |
|
1410 | 0 | for (auto& constraint : constraints) { |
1411 | | // In the paper this is a[k]. We're extracting the coefficient ('a') of a |
1412 | | // recurrent expression with respect to the loop 'k'. |
1413 | 0 | SENode* coefficient_of_recurrent = |
1414 | 0 | scalar_evolution_.GetCoefficientFromRecurrentTerm( |
1415 | 0 | new_first, constraint->GetLoop()); |
1416 | | |
1417 | | // In the paper this is a'[k]. |
1418 | 0 | SENode* coefficient_of_recurrent_prime = |
1419 | 0 | scalar_evolution_.GetCoefficientFromRecurrentTerm( |
1420 | 0 | new_second, constraint->GetLoop()); |
1421 | |
|
1422 | 0 | if (constraint->GetType() == Constraint::Distance) { |
1423 | 0 | DependenceDistance* as_distance = constraint->AsDependenceDistance(); |
1424 | | |
1425 | | // In the paper this is a[k]*d |
1426 | 0 | SENode* rhs = scalar_evolution_.CreateMultiplyNode( |
1427 | 0 | coefficient_of_recurrent, as_distance->GetDistance()); |
1428 | | |
1429 | | // In the paper this is a[k] <- 0 |
1430 | 0 | SENode* zeroed_coefficient = |
1431 | 0 | scalar_evolution_.BuildGraphWithoutRecurrentTerm( |
1432 | 0 | new_first, constraint->GetLoop()); |
1433 | | |
1434 | | // In the paper this is e <- e - a[k]*d. |
1435 | 0 | new_first = scalar_evolution_.CreateSubtraction(zeroed_coefficient, rhs); |
1436 | 0 | new_first = scalar_evolution_.SimplifyExpression(new_first); |
1437 | | |
1438 | | // In the paper this is a'[k] - a[k]. |
1439 | 0 | SENode* new_child = scalar_evolution_.SimplifyExpression( |
1440 | 0 | scalar_evolution_.CreateSubtraction(coefficient_of_recurrent_prime, |
1441 | 0 | coefficient_of_recurrent)); |
1442 | | |
1443 | | // In the paper this is a'[k]'i[k]. |
1444 | 0 | SERecurrentNode* prime_recurrent = |
1445 | 0 | scalar_evolution_.GetRecurrentTerm(new_second, constraint->GetLoop()); |
1446 | |
|
1447 | 0 | if (!prime_recurrent) continue; |
1448 | | |
1449 | | // As we hash the nodes we need to create a new node when we update a |
1450 | | // child. |
1451 | 0 | SENode* new_recurrent = scalar_evolution_.CreateRecurrentExpression( |
1452 | 0 | constraint->GetLoop(), prime_recurrent->GetOffset(), new_child); |
1453 | | // In the paper this is a'[k] <- a'[k] - a[k]. |
1454 | 0 | new_second = scalar_evolution_.UpdateChildNode( |
1455 | 0 | new_second, prime_recurrent, new_recurrent); |
1456 | 0 | } |
1457 | 0 | } |
1458 | |
|
1459 | 0 | new_second = scalar_evolution_.SimplifyExpression(new_second); |
1460 | 0 | return std::make_pair(new_first, new_second); |
1461 | 0 | } |
1462 | | |
1463 | | bool LoopDependenceAnalysis::DeltaTest( |
1464 | | const std::vector<SubscriptPair>& coupled_subscripts, |
1465 | 0 | DistanceVector* dv_entry) { |
1466 | 0 | std::vector<Constraint*> constraints(loops_.size()); |
1467 | |
|
1468 | 0 | std::vector<bool> loop_appeared(loops_.size()); |
1469 | |
|
1470 | 0 | std::generate(std::begin(constraints), std::end(constraints), |
1471 | 0 | [this]() { return make_constraint<DependenceNone>(); }); |
1472 | | |
1473 | | // Separate SIV and MIV subscripts |
1474 | 0 | std::vector<SubscriptPair> siv_subscripts{}; |
1475 | 0 | std::vector<SubscriptPair> miv_subscripts{}; |
1476 | |
|
1477 | 0 | for (const auto& subscript_pair : coupled_subscripts) { |
1478 | 0 | if (IsSIV(subscript_pair)) { |
1479 | 0 | siv_subscripts.push_back(subscript_pair); |
1480 | 0 | } else { |
1481 | 0 | miv_subscripts.push_back(subscript_pair); |
1482 | 0 | } |
1483 | 0 | } |
1484 | | |
1485 | | // Delta Test |
1486 | 0 | while (!siv_subscripts.empty()) { |
1487 | 0 | std::vector<bool> results(siv_subscripts.size()); |
1488 | |
|
1489 | 0 | std::vector<DistanceVector> current_distances( |
1490 | 0 | siv_subscripts.size(), DistanceVector(loops_.size())); |
1491 | | |
1492 | | // Apply SIV test to all SIV subscripts, report independence if any of them |
1493 | | // is independent |
1494 | 0 | std::transform( |
1495 | 0 | std::begin(siv_subscripts), std::end(siv_subscripts), |
1496 | 0 | std::begin(current_distances), std::begin(results), |
1497 | 0 | [this](SubscriptPair& p, DistanceVector& d) { return SIVTest(p, &d); }); |
1498 | |
|
1499 | 0 | if (std::accumulate(std::begin(results), std::end(results), false, |
1500 | 0 | std::logical_or<bool>{})) { |
1501 | 0 | return true; |
1502 | 0 | } |
1503 | | |
1504 | | // Derive new constraint vector. |
1505 | 0 | std::vector<std::pair<Constraint*, size_t>> all_new_constrants{}; |
1506 | |
|
1507 | 0 | for (size_t i = 0; i < siv_subscripts.size(); ++i) { |
1508 | 0 | auto loop = GetLoopForSubscriptPair(siv_subscripts[i]); |
1509 | |
|
1510 | 0 | auto loop_id = |
1511 | 0 | std::distance(std::begin(loops_), |
1512 | 0 | std::find(std::begin(loops_), std::end(loops_), loop)); |
1513 | |
|
1514 | 0 | loop_appeared[loop_id] = true; |
1515 | 0 | auto distance_entry = current_distances[i].GetEntries()[loop_id]; |
1516 | |
|
1517 | 0 | if (distance_entry.dependence_information == |
1518 | 0 | DistanceEntry::DependenceInformation::DISTANCE) { |
1519 | | // Construct a DependenceDistance. |
1520 | 0 | auto node = scalar_evolution_.CreateConstant(distance_entry.distance); |
1521 | |
|
1522 | 0 | all_new_constrants.push_back( |
1523 | 0 | {make_constraint<DependenceDistance>(node, loop), loop_id}); |
1524 | 0 | } else { |
1525 | | // Construct a DependenceLine. |
1526 | 0 | const auto& subscript_pair = siv_subscripts[i]; |
1527 | 0 | SENode* source_node = std::get<0>(subscript_pair); |
1528 | 0 | SENode* destination_node = std::get<1>(subscript_pair); |
1529 | |
|
1530 | 0 | int64_t source_induction_count = CountInductionVariables(source_node); |
1531 | 0 | int64_t destination_induction_count = |
1532 | 0 | CountInductionVariables(destination_node); |
1533 | |
|
1534 | 0 | SENode* a = nullptr; |
1535 | 0 | SENode* b = nullptr; |
1536 | 0 | SENode* c = nullptr; |
1537 | |
|
1538 | 0 | if (destination_induction_count != 0) { |
1539 | 0 | a = destination_node->AsSERecurrentNode()->GetCoefficient(); |
1540 | 0 | c = scalar_evolution_.CreateNegation( |
1541 | 0 | destination_node->AsSERecurrentNode()->GetOffset()); |
1542 | 0 | } else { |
1543 | 0 | a = scalar_evolution_.CreateConstant(0); |
1544 | 0 | c = scalar_evolution_.CreateNegation(destination_node); |
1545 | 0 | } |
1546 | |
|
1547 | 0 | if (source_induction_count != 0) { |
1548 | 0 | b = scalar_evolution_.CreateNegation( |
1549 | 0 | source_node->AsSERecurrentNode()->GetCoefficient()); |
1550 | 0 | c = scalar_evolution_.CreateAddNode( |
1551 | 0 | c, source_node->AsSERecurrentNode()->GetOffset()); |
1552 | 0 | } else { |
1553 | 0 | b = scalar_evolution_.CreateConstant(0); |
1554 | 0 | c = scalar_evolution_.CreateAddNode(c, source_node); |
1555 | 0 | } |
1556 | |
|
1557 | 0 | a = scalar_evolution_.SimplifyExpression(a); |
1558 | 0 | b = scalar_evolution_.SimplifyExpression(b); |
1559 | 0 | c = scalar_evolution_.SimplifyExpression(c); |
1560 | |
|
1561 | 0 | all_new_constrants.push_back( |
1562 | 0 | {make_constraint<DependenceLine>(a, b, c, loop), loop_id}); |
1563 | 0 | } |
1564 | 0 | } |
1565 | | |
1566 | | // Calculate the intersection between the new and existing constraints. |
1567 | 0 | std::vector<Constraint*> intersection = constraints; |
1568 | 0 | for (const auto& constraint_to_intersect : all_new_constrants) { |
1569 | 0 | auto loop_id = std::get<1>(constraint_to_intersect); |
1570 | 0 | auto loop = loops_[loop_id]; |
1571 | 0 | intersection[loop_id] = IntersectConstraints( |
1572 | 0 | intersection[loop_id], std::get<0>(constraint_to_intersect), |
1573 | 0 | GetLowerBound(loop), GetUpperBound(loop)); |
1574 | 0 | } |
1575 | | |
1576 | | // Report independence if an empty constraint (DependenceEmpty) is found. |
1577 | 0 | auto first_empty = |
1578 | 0 | std::find_if(std::begin(intersection), std::end(intersection), |
1579 | 0 | [](Constraint* constraint) { |
1580 | 0 | return constraint->AsDependenceEmpty() != nullptr; |
1581 | 0 | }); |
1582 | 0 | if (first_empty != std::end(intersection)) { |
1583 | 0 | return true; |
1584 | 0 | } |
1585 | 0 | std::vector<SubscriptPair> new_siv_subscripts{}; |
1586 | 0 | std::vector<SubscriptPair> new_miv_subscripts{}; |
1587 | |
|
1588 | 0 | auto equal = |
1589 | 0 | std::equal(std::begin(constraints), std::end(constraints), |
1590 | 0 | std::begin(intersection), |
1591 | 0 | [](Constraint* a, Constraint* b) { return *a == *b; }); |
1592 | | |
1593 | | // If any constraints have changed, propagate them into the rest of the |
1594 | | // subscripts possibly creating new ZIV/SIV subscripts. |
1595 | 0 | if (!equal) { |
1596 | 0 | std::vector<SubscriptPair> new_subscripts(miv_subscripts.size()); |
1597 | | |
1598 | | // Propagate constraints into MIV subscripts |
1599 | 0 | std::transform(std::begin(miv_subscripts), std::end(miv_subscripts), |
1600 | 0 | std::begin(new_subscripts), |
1601 | 0 | [this, &intersection](SubscriptPair& subscript_pair) { |
1602 | 0 | return PropagateConstraints(subscript_pair, |
1603 | 0 | intersection); |
1604 | 0 | }); |
1605 | | |
1606 | | // If a ZIV subscript is returned, apply test, otherwise, update untested |
1607 | | // subscripts. |
1608 | 0 | for (auto& subscript : new_subscripts) { |
1609 | 0 | if (IsZIV(subscript) && ZIVTest(subscript)) { |
1610 | 0 | return true; |
1611 | 0 | } else if (IsSIV(subscript)) { |
1612 | 0 | new_siv_subscripts.push_back(subscript); |
1613 | 0 | } else { |
1614 | 0 | new_miv_subscripts.push_back(subscript); |
1615 | 0 | } |
1616 | 0 | } |
1617 | 0 | } |
1618 | | |
1619 | | // Set new constraints and subscripts to test. |
1620 | 0 | std::swap(siv_subscripts, new_siv_subscripts); |
1621 | 0 | std::swap(miv_subscripts, new_miv_subscripts); |
1622 | 0 | std::swap(constraints, intersection); |
1623 | 0 | } |
1624 | | |
1625 | | // Create the dependence vector from the constraints. |
1626 | 0 | for (size_t i = 0; i < loops_.size(); ++i) { |
1627 | | // Don't touch entries for loops that weren't tested. |
1628 | 0 | if (loop_appeared[i]) { |
1629 | 0 | auto current_constraint = constraints[i]; |
1630 | 0 | auto& current_distance_entry = (*dv_entry).GetEntries()[i]; |
1631 | |
|
1632 | 0 | if (auto dependence_distance = |
1633 | 0 | current_constraint->AsDependenceDistance()) { |
1634 | 0 | if (auto constant_node = |
1635 | 0 | dependence_distance->GetDistance()->AsSEConstantNode()) { |
1636 | 0 | current_distance_entry.dependence_information = |
1637 | 0 | DistanceEntry::DependenceInformation::DISTANCE; |
1638 | |
|
1639 | 0 | current_distance_entry.distance = constant_node->FoldToSingleValue(); |
1640 | 0 | if (current_distance_entry.distance == 0) { |
1641 | 0 | current_distance_entry.direction = DistanceEntry::Directions::EQ; |
1642 | 0 | } else if (current_distance_entry.distance < 0) { |
1643 | 0 | current_distance_entry.direction = DistanceEntry::Directions::GT; |
1644 | 0 | } else { |
1645 | 0 | current_distance_entry.direction = DistanceEntry::Directions::LT; |
1646 | 0 | } |
1647 | 0 | } |
1648 | 0 | } else if (auto dependence_point = |
1649 | 0 | current_constraint->AsDependencePoint()) { |
1650 | 0 | auto source = dependence_point->GetSource(); |
1651 | 0 | auto destination = dependence_point->GetDestination(); |
1652 | |
|
1653 | 0 | if (source->AsSEConstantNode() && destination->AsSEConstantNode()) { |
1654 | 0 | current_distance_entry = DistanceEntry( |
1655 | 0 | source->AsSEConstantNode()->FoldToSingleValue(), |
1656 | 0 | destination->AsSEConstantNode()->FoldToSingleValue()); |
1657 | 0 | } |
1658 | 0 | } |
1659 | 0 | } |
1660 | 0 | } |
1661 | | |
1662 | | // Test any remaining MIV subscripts and report independence if found. |
1663 | 0 | std::vector<bool> results(miv_subscripts.size()); |
1664 | |
|
1665 | 0 | std::transform(std::begin(miv_subscripts), std::end(miv_subscripts), |
1666 | 0 | std::begin(results), |
1667 | 0 | [this](const SubscriptPair& p) { return GCDMIVTest(p); }); |
1668 | |
|
1669 | 0 | return std::accumulate(std::begin(results), std::end(results), false, |
1670 | 0 | std::logical_or<bool>{}); |
1671 | 0 | } |
1672 | | |
1673 | | } // namespace opt |
1674 | | } // namespace spvtools |