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Abstract—Billion-node graphs pose significant challenges at
all levels from storage infrastructures to programming models.
It is critical to develop a general purpose platform for graph
processing. A distributed memory system is considered a feasible
platform supporting online query processing as well as offline
graph analytics. In this paper, we study the problem of parti-
tioning a billion-node graph on such a platform, an important
consideration because it has direct impact on load balancing and
communication overhead. It is challenging not just because the
graph is large, but because we can no longer assume that the data
can be organized in arbitrary ways to maximize the performance
of the partitioning algorithm. Instead, the algorithm must adopt
the same data and programming model adopted by the system
and other applications. In this paper, we propose a multi-
level label propagation (MLP) method for graph partitioning.
Experimental results show that our solution can partition billion-
node graphs within several hours on a distributed memory system
consisting of merely several machines, and the quality of the
partitions produced by our approach is comparable to state-of-
the-art approaches applied on toy-size graphs.

I. INTRODUCTION

Many large graphs have emerged in recent years. The most
well known graph is the WWW, which now contains more
than 50 billion web pages and more than one trillion unique
URLs [1]. A recent snapshot of the friendship network of Face-
book contains 800 million nodes and over 100 billion links [2].
LinkedData is also going through exponential growth, and it
now consists of 31 billion RDF triples and 504 million RDF
links [3]. In biology, the genome assembly problem has been
converted into a problem of constructing, simplifying, and
traversing the de Brujin graph of the read sequence [4]. Each
vertex in the de Brujin graph represents a k-mer, and the entire
graph in the worst can contain as many as 4

k vertices, where
k generally is at least 20.

We are facing challenges at all levels from system infras-
tructures to programming models for managing and analyzing
large graphs. We argue that a distributed memory system
has the potential to meet both the memory and computation
requirements for large graph processing. One of the biggest
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challenges is how to partition a graph so that it can be deployed
on a distributed system. In this paper, we propose a general-
purpose, scalable, and semantic (community-aware) approach
to partition web-scale graphs.

A. Distributed Graphs
A distributed memory system is a suitable infrastructure

for online query processing over billion node graphs [17].
To deploy a graph on a distributed memory system, we
need to divide the graph into multiple partitions, and store
each partition in one machine1. Network communication is
required for accessing non-local partitions of the graph. Thus,
how the graph is partitioned may cause significant impact
on load balancing and communication. Consider performing
a BFS on a graph, which needs to access each edge of the
graph. Whenever an edge crosses machine boundaries, we
need to send and receive a network message. The cost of
the BFS largely depends on how many network messages
are needed. As an example, Figure 1(a) shows that different
partitionings may lead to different communication overheads
in distributed systems. Assuming we have 3 machines, and
each can hold at most 4 vertices and if we partition the
graph as {a, b, c, d}, {e, f, g, h}, {h, i, j, k}, we need 3 net-
work communications for a BFS. However, we end up re-
quiring 17 remote accesses for a BFS if we partition it into
{c, d, i, f}, {a, e, j, k}, {b, g, h, l}.

B. Existing Graph Partitioning Methods
The graph partitioning problem has been studied extensively

in many application areas (e.g., VLSI design). The problem
of finding an optimal partition is NP-Complete [23]. As a
result, many approximate solutions have been proposed [5],
[6]. However, as we show below, none of the existing solutions
are capable of partitioning web-scale graphs on distributed
memory systems.

Scalability: Most current graph partitioning algorithms
are for small, memory-based graphs. A class of local re-
finement algorithms, most of which originated from the
Kerninghan-Lin (KL) algorithm [5], bisect a graph into even
size partitions. The KL algorithm incrementally swaps vertices

1In this work, we assume no overlap between any two partitions.
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Fig. 1. An example graph and its coarse-grained graph

among partitions of a bisection to reduce the edge-cut of the
partitioning, until the partitioning reaches a local minimum.
There are many variations based on the KL algorithm, includ-
ing the FM algorithm [6]. The local refinement algorithms are
costly, and are designed for memory-based graphs only.

Recently, several multi-level partitioning algorithms have
been proposed [7], [8], [10]. The idea is to “coarsen” a large
graph into a small graph and apply algorithms such as KL
and FM on the small graph. However, as we will discuss in
more detail in Section II-B, the assumption that (near) optimal
partitions on coarsened graphs implies a good partitioning
in the original graph may not be valid for real life, scale-
free graphs. Furthermore, the coarsening algorithm (maximal
matching) is very costly, and does not scale on billion-node
graphs.

To improve the scalability, some parallel partitioning solu-
tions have been proposed, including ParMetis [11] and PT-
Scotch [12]. Still, they cannot scale to billion-node graphs
without significant improvement. For example, ParMetis uses
maximal match to coarsen a large graph. To find the maximal
match, it needs to perform random accesses. This aspect limits
its extension on disk resident large graphs with billions of
nodes. In fact, the largest graph reported by these approaches
only has 23M nodes [12].

Generality: It is important to develop a general purpose
infrastructure where graphs can be stored, served, and ana-
lyzed, especially for web-scale graphs. Current partitioning
methods are not built on top of a general-purpose graph
infrastructure. Instead, they are designed exclusively for the
purpose of partitioning. Hence, they assume that the data
can be organized or manipulated in ways that maximize the
performance of the partitioning algorithm. To partition an
existing billion-node graph stored in a general-purpose graph
system, we must take the data out of the system, convert it
into a partition friendly format, and after partitioning convert
it back to the format on the system. In general, previous
solutions are not conducive to a general-purpose graph in-
frastructure. For example, before ParMetis [11] can work, it
requires that the graph is partitioned two-dimensionally, that
is, the adjacency list of a single vertex is divided and stored

in multiple machines. This helps reduce the communication
overhead when coarsening a graph. However, such a design
may be disruptive to other graph algorithms. Even if we adopt
this approach, the cost of converting data back and forth is
often prohibitive for web-scale graphs.

Then, the question is, is any infrastructure currently avail-
able appropriate for web-scale graphs? MapReduce is an
effective paradigm for large-scale data processing. However,
MapReduce is not the best choice for graph applications [13],
[14]. Besides the fact that it does not support online graph
query processing, many graph algorithms for offline analytics
cannot be expressed naturally and intuitively. Instead, they
need a total rethinking in the “MapReduce language.” For
example, graph exploration, i.e., following links from one ver-
tex to its neighbors, is implemented by MapReduce iterations.
Each iteration requires large amount of disk space and network
I/O, which is exacerbated by the random access pattern of
graph algorithms. Furthermore, the irregular structures of the
graph often lead to varying degrees of parallelism over the
course of execution, and overall, parallelism is poorly ex-
ploited [13], [14]. Only algorithms such as PageRank, shortest
path discovery that can be implemented in vertex-centric
processing and run in a fixed number of iterations can achieve
good efficiency. The Pregel system [15] introduced a vertex-
centric framework to support such algorithms. However, graph
partitioning is still a big challenge. We are not aware of any
effective graph partitioning algorithms in MapReduce or even
in the vertex-centric framework.

Semantics: Real life graphs are not random or regular.
Social networks and WWW are well-known for their irreg-
ularity and complex structures. Most partitioning algorithms
ignore the complex structures. Many of them are designed for
relatively regular graphs (such as meshes) that have generally
uniform degree distribution. Some recent approaches take into
consideration the power-law degree distribution exhibited by
many real life networks [16]. However, many other features in
complex networks such as small-world, community structure
are not given enough considerations. Thus, whether existing
state-of-the-art approaches work well on real life, complex,
and web-scale networks remains an open problem. In our
approach, we take the community structure of real networks
into consideration when we partition the graphs.

C. New Challenges
Motivated by the above facts, we have developed a scalable

and semantic-aware graph partitioning solution on a general-
purpose distributed memory system. Our goal is to partition
web-scale real graphs. To do so, we must address challenges
introduced by real-life large graphs:

• The irregular structure of real graphs leads to poor par-
allelism. In general, the logic of a partitioning algorithm
is complex and many computation steps may depend
heavily on each other, leading to poor parallelism.

• The skewed degree distribution (such as power-law) of
real graphs generates unbalanced load distribution over
different processors.

• The data access pattern on real graphs exhibits poor
locality. In general, computation involved in partitioning
a real complex graph, such as social network, shows
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poor locality. As a result, the data access pattern is
hard to predict, which means message passing is hard
to optimize.

To meet the above challenges, we introduce an efficient
(both in time and space), highly parallelized graph partitioning
solution with small communication overhead. We present a
multilevel label propagation (MLP) framework and its opti-
mized implementation on a typical distributed memory system.
Experimental results show that our solution is efficient and
effective. For example, our solution can partition a graph with
512M nodes and 6.5G edges within 4 hours on a distributed
memory system consisting of merely 8 machines. The quality
of the resulting partitions is comparable to that of the current
best approach, METIS [8].

D. Paper Organization
The rest of the paper is organized as follows. Section 2 in-

troduces the graph infrastructure, as well as some background
information about graph coarsening and label propagation.
In Section 3, we discuss measures for graph partitioning
and give the estimation of random partitioning on synthetic
graphs. In Section 4, we present the MLP algorithm. Section
5 presents a disk-based implementation of MLP. Section 6
presents experiment results, and Section 7 reviews related
works. We conclude in Section 8.

II. BACKGROUND

In this section, we first introduce the Trinity infrastructure,
which is used as a general-purpose computation platform for
web scale graphs. Then, we introduce two techniques related
to our approach for graph partitioning: graph coarsening and
label propagation.

A. The Trinity Graph System
We use Trinity [17] as the infrastructure for handling web-

scale graphs. Trinity is essentially a memory cloud created
out of the RAM of multiple machines, and it offers a unified
memory space for user programs. Most graph applications
need efficient random data accesses on graphs, and Trinity’s
efficient in-memory graph exploration and bulk message pass-
ing mechanisms answered this need and lays the foundation
for developing our graph partitioning algorithm. Still, there are
many challenges to devising graph partitioning algorithms.

B. Graph Coarsening
Graph partitioning algorithms such as KL [5] and FM [6] are

effective for small graphs. For a large graph, a widely adopted
approach is to “coarsen” the graph until its size is small
enough for KL or FM. The idea is known as multi-level graph
partitioning, and a representative approach is METIS [8].

METIS works in three steps: (1) coarsening the graph; (2)
partitioning the coarsened graph; (3) uncoarsening. In the 1st
step, METIS coarsens a graph by finding the maximal match.
A maximal match is a maximal set of edges where no two
edges share a common vertex. After it finds a maximal match,
it collapses the two ends of each edge into one node, and as
a result, the graph is “coarsened.” The coarsening step repeats
until the graph is small enough. Then, in the 2nd step, it applies
KL or FM directly on the small graph. In the third step, the

partitions on the small graph are projected back to the finer
graphs.

Before we discuss potential problems of coarsening for real
life graphs, we first look at an example:

Example 1 (Maximal match): For the graph shown in Fig-
ure 1(a), the following edge set is a maximal match:

{(c, f), (e, g), (h, i), (k, l), (j, b), (a, d)}

Figure 1(b) is the result of coarsening (obtained after collaps-
ing the two ends of each edge in the maximal match).

The correctness of METIS is based on the following as-
sumption: A (near) optimal partitioning on a coarser graph
implies a good partitioning in the finer graph. However, in
general, the assumption only holds true when the degree of
nodes in the graph is bounded by a constant [9]. For example,
2D or 3D meshes are graphs where node degrees are bounded.
However, for today’s real life graphs, the assumption does
not hold any more. It is well established that the degree
distribution of real life networks are right-skewed, and there
are many hub vertices with very large degrees. In other words,
the degree is not bounded by a small constant, but is related to
the size of the graph. As a result, a maximal match may fail to
serve as a good coarsening scheme in graph partitioning. For
example, the coarsened graph in Figure 1(b) no longer contains
the clear structure of the original graph. Thus, partitions on
the coarsened graph cannot be optimal for the original graph.

Furthermore, the process of coarsening by maximal match
is inefficient for billion-node graphs. Two maximal match
strategies are used in various versions of METIS: Random
matching (RM) and Heavy Edge Matching (HEM). In RM,
the vertices are visited in a random order. If a vertex u has not
been matched yet, then one of its unmatched neighbors will
be randomly selected and matched with u. HEM is similar
to RM, except that it selects the unmatched neighbor v if
edge (u, v) has the largest weight. As we can see, in the
above mentioned approaches, vertices are matched in a random
order. For disk resident graphs, random access leads to bad
performance. In a multi-level framework, graphs generated
at each level and the mappings between them are stored in
memory. These intermediate results can be very large. For
example, for LiveJournal2, a real social network that contains
more than four million vertices, METIS (using either RM or
HEM) will consume more than 10G of memory. The heavy
usage of memory makes the approach unfeasible for billion-
node graphs.

C. Label Propagation
We propose a method for large scale graph partitioning

based on the idea of label propagation (LP), which was orig-
inally proposed for community detection in social networks.
A naive LP runs as follows. We first assign a unique label id
to each vertex. Then, we update the vertex label iteratively. In
each iteration, a vertex takes the label that is prevalent in its
neighborhood as its own label. The process terminates when
labels no longer change. Vertices that have the same label
belong to the same partition.

There are two reasons we adopt label propagation for parti-
tioning. First, the label propagation mechanism is lightweight.

2http://snap.stanford.edu/data/soc-LiveJournal1.html
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It does not generate big intermediary results, and it does not
require sorting or indexing the data as in many current graph
partitioning algorithms. This makes label propagation feasible
for web scale graphs deployed on Trinity. With Trinity’s
efficient graph exploration and message passing mechanism,
label propagation can be implemented with ease. Indeed, pure
label propagation can be implemented using the vertex-centric
computation model in 2 lines of code. More specifically, label
propagation has low complexity, as long as the number of
iterations is bounded: Let G(V,E) be a graph, where V
is the set of vertices, and E is the set of edges. In each
iteration, labels need to be propagated along all edges, which
takes ⇥(|E|) time. Thus, the time complexity is O(t|E|),
where t is the number of iterations. On real-life networks,
label propagation tends to converge in a constant number of
iterations. Thus, it runs in almost linear time.

Second, label propagation is “semantic-aware” as it is able
to discover inherent community structures in real networks:
Given the existence of local closely connected substructures,
a label tends to propagate within such structures. Since most
real-life networks demonstrate clear community structures, a
partitioning algorithm based on label propagation may divide
the graph into meaningful partitions. Compared to maximal
match, LP is more semantic-aware and is a better coarsening
scheme. We illustrate this in Example 2.

Example 2 (Coarsening by LP): Using LP, we obtain a
coarser graph shown in Figure 1(c) for the original graph
shown in Figure 1(a). In Figure 1(c), C

1

= {a, b, c, d}, C
2

=

{e, f, g, h} and C
3

= {i, j, k, l}. In this coarsened graph,
the community structure of the original graph is completely
preserved.

III. PROBLEM AND BASELINE

We formalize the problem of graph partitioning. Then, we
study the quality of random partitioning, which serves as a
baseline for other partitioning algorithms.

A. Problem Definitions
First, we need to decide how to measure the goodness of a

partitioning. A natural goodness measure is the size of edge
cut, that is, edges whose two end points are in two different
partitions. In general, we want to minimize the size of edge
cut. Particularly, in a distributed memory system, navigating
along such edges means performing remote accesses. Too
many remote accesses bring costly communication overheads.

Definition 1 (Size of edge cut): For a partitioning P on
graph G(V,E), the size of edge cut is ec(P) =

P
v2V ec(v),

where ec(v) is the number of v’s neighbors that do not belong
to v’s partition3.

Minimizing the total number of cross-partition edges may
not always be the goal we want to optimize for. For example,
in BSP, in each iteration, we assemble individual messages
between two machines into a single message, which incurs
a single network communication. This makes sense because
the cost mostly comes from the number of network commu-
nications rather than the size of the message (given that the

3Note that the edge-cut size defined here is exactly the two fold of the
precise edge cut size in an undirected graph. In a distributed environment, the
size defined here accurately accounts for the real number of communications.

size of each message is often very small). Thus, instead of
minimizing the total number of cross-partition edges, we need
to minimize the total communication volume.

Definition 2 (Communication volume of P ): For a parti-
tioning P on graph G(V,E), the communication volume of P
is given by cv(P) =

P
v2V cv(v), where cv(v) is the number

of partitions (except v’s partition) that contain the neighbors
of v.

Besides edge cut or communication volume, we measure
the goodness of a partitioning by its balance. A partitioning
is balanced if each partition has more or less the same amount
of nodes. This is desired in a distributed environment for load
balance. Given k machines, we expect the graph equally dis-
tributed over machines, i.e., each machine has approximately
b |V |

k c vertices. In general, relaxation is allowed so that the
exact number of vertices in a single machine is (1± ✏)b |V |

k c
with 0 < ✏ ⌧ 1.

Based on the goodness measures given above, the graph
partitioning problem is: how to divide a graph into k parts
with approximately identical size so that the edge cut size or
the total communication volume is minimized in a distributed
memory system? We state it in a more formal manner in
Definition 1.

Problem Definition 1 (Graph Partitioning): Given a graph
G(V,E) and a positive integer k, we divide V into a set of
non-overlapping partitions P = {C

1

, C
2

, ..., Ck} such that (1)
|Ci| ⇡ |V |/k for each Ci; (2) ec(P) (or cv(P)) is minimized.

B. The Random Partitioning Baseline
We evaluate the quality of random partitioning on two

typical classes of graphs: ER graphs [18] and scale free
graphs [19]. By doing so, we build the baseline for more
advanced partitioning mechanisms.

First, we define the random partitioning on a graph. One
widely used random partitioning mechanism is that each vertex
chooses a machine uniformly at random from all k possible
ones. After all the vertices finish their selection, the number
of vertices on each machine (|Vi|) will follow the Binomial
distribution B

�
n, 1

k

�
, where n is the vertex number of G.

Under this random partitioning, an edge’s two end nodes have
the probability 1� 1

k to be on different machines. The edge cut
therefore will follow the Binomial distribution B

�
|E|, 1� 1

k

�
.

Given a set V of n vertices, we generate an ER graph G
by linking each vertex pair with probability p. We denote a
graph G generated in this way as G 2 Gn,p. Without a loss
of generality, in the following analysis, we assume that n and
k (number of machines) are the power of 2, and k, p are
constants.

Lemma 1: If G 2 Gn,p and P is a random partitioning over
G on k machines, then we have

1) E[ec(P)] =

n2p(k�1)

k ;
2) E[cv(P)] = n(k � 1)

�
1� (1� p/k)n�1

�
;

where E[ec(P)] and E[cv(P)] are the expected value of ec(P)

and cv(P), respectively.
For scale free graphs, the degree of a vertex follows the

power-law distribution: p(d) = c ⇥ d�� where � > 1. That
is, the probability that a vertex has degree d is proportional to
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d�� for some constant �. A variety of real networks observe
the power-law degree distribution. The constant c = ⇣(�)�1

is a normalized constant and ⇣(�) =

P
1n<1 n�� , which

in fact is the Riemann Zeta Function. � specifies a class of
scale free graphs. If G has power-law degree distribution with
exponent �, we say G 2 G� . Similarly, � and k are given as
constants in the following analysis.

Lemma 2: Let P be a random partitioning on a graph G 2
G� on k machines, then we have:

1) E[ec(P)] = nk�1

k
⇣(��1)

⇣(�) ;
2) E[cv(P)] = n⇣(�)�1

(k � 1)

P
i�1

i��
[1� (1� 1

k )
i
]

IV. MULTI-LEVEL LABEL PROPAGATION

We present the Multi-level Label Propagation (MLP) al-
gorithm for partitioning billion-node graphs in a distributed
memory system. The algorithm can be easily parallelized,
which enables it to take advantage of a distributed system.

A. Overview
We outline the major steps of MLP in Figure 2 as well as

in Algorithm 1. Given a graph G, the algorithm divides G
into k balanced partitions stored in k machines. Initially, each
vertex is assigned a unique label, which indicates the partition
it belongs to. In the end, the entire graph will have k labels,
and each label has the same number of vertices.

The algorithm has three steps. The first step is iterative
coarsening. In each iteration, we find densely connected
substructures through label propagation (LP). We collapse
each connected structure into a single vertex to produce a
“coarsened” graph. Then we repeat the process until the graph
is small enough. The rationale for iterative coarsening is that
a single round is not enough to reduce the number of labels to
an acceptable level. The coarsening step is controlled by 3 user
specified parameters: We keep coarsening the graph until there
are no more than ↵ labels (partitions); The label propagation
takes at most � iterations to avoid wasteful iterations; The
size of each label (partition) is controlled by � � 1 – each
label (partition) has an upper-limit size of |V |

k� . In the second
step, we partition the coarsened graph using an off-the-shelf
algorithm, such as KL or METIS. In the last step we project
the partitioning on the coarsened graph to the original graph.
As we will see, this step is trivial, and it is not elaborated in
Algorithm 1.

G0

G1

G2

G3

G0

Coarsening phase by multi-level LP

Refinement phase

Mapping back

Fig. 2. The multilevel label propagation framework

MLP distinguishes itself from previous graph partitioning
methods in two aspects: i) Coarsening by LP instead of
maximal matching (as in METIS) keeps the semantics or the

Algorithm 1 Multi-level LP
Input: G(V,E), k
Output: A balanced partitioning on V

{1. Coarsening phase}
1: G0  G;
2: while #labels is larger than ↵ do
3: Run weighted LP under size constraint |V |

k� for � iterations; //
the result is P;

4: Construct the coarse-grained graph G0 from P ; //
5: end while

{2. Refinement phase}
6: Refine(G0,k);

{3. Projecting back}

structures of the graph. It is also more efficient than maximal
matching. ii) In MLP, once two vertices are assigned the same
label in a coarsened graph, they will always share the same
label in coarser graphs in later iterations. METIS, on the other
hand, needs to relabel the vertices in the refinement step.

B. The Coarsening Step
Let G

0

= G(V,E) be the input graph, and let
G

1

, ..., Gi, ..., Gt be the intermediate graphs generated during
the coarsening step. Let Pi = {C

1

, C
2

, ..., Cn} be the parti-
tioning derived by running LP on Gi. Each Pi is defined on
Gi. We define a coarsened graph as follows:

Definition 3 (Coarsened graph): For a graph Gi(Vi, Ei)

and a partitioning on the graph Pi = {C
1

, C
2

, ..., Cn}, the
coarsened graph Gi+1

is a graph with vertex set Vi+1

and
edge set Ei+1

, where Vi+1

= Pi, and (Ci, Cj) 2 Ei+1

iff
9u 2 Ci, v 2 Cj such that (u, v) 2 Ei.

As an example, consider the coarsened graph
in Figure 1(c). It is produced from the partitions
{{a, b, c, d}, {e, f, g, h}, {i, j, k, l}} of the graph in
Figure 1(a).

1) Label updating: The original label updating mechanism
of LP works like this: each vertex is assigned a label which is
the most frequent label of its neighbors. If multiple labels have
the same top frequency, we pick one randomly. In MLP, we
make two extensions to the original label updating mechanism.

Structure-preserving label updating: A good labeling pro-
cedure should be ‘semantic-aware,’ i.e., vertices sharing a lot
of common neighbors should be assigned the same label, i.e.,
grouped together. Instead of using the common practice of
randomly choosing among the most frequent labels, we select
the minimal label to better support semantic awareness.

To illustrate, consider the first iteration of LP. In the first
iteration, each vertex has a unique label. Hence, all of the
labels have the same frequency. We compare two strategies.
First, we randomly select a label of its neighbors. Second,
we select the minimal label of its neighbors (assuming labels
can be linearly ordered). Assume both nodes u and v have 10
neighbors. If half of the neighbors are the same, the probability
that u and v are assigned the same label is less than 1/10
under the first strategy, while under the second strategy the
probability becomes 1/3. If all of the neighbors are the same,
the probability is 1/10 under the first strategy, while under the
second strategy the probability becomes 1.

We formally show this in Lemma 3. The first statement
shows that even if when two vertices share a significant
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number of neighbors, the probability that they are clustered
together is less than 1

max{|N(u)|,|N(v)|} . In contrast, the second
statement shows a desired property of the second strategy: The
more neighbor sharing, the more likely the two vertices are
clustered together. Lemma 3 further ensures that the second
strategy is better than the first strategy. The upper bounds
of the two probabilities also implies that p0(u, v) may be
significantly larger than p(u, v).

Lemma 3 (Random vs. minimal label): Let u, v 2 V be
two vertices and N(u) be the neighbors of u. Suppose each
vertex is assigned a unique label and there is a linear order on
all labels. The following statements hold:

1) The probability that a randomly selected label from
N(u) is identical to a randomly selected label from
N(v) is

p(u, v) =
|N(u) \N(v)|
|N(u)||N(v)|  1

max{|N(u)|, |N(v)|}
2) The probability that the minimal labels of N(u) and

N(v) are identical is

p0(u, v) =
|N(u) \N(v)|
|N(u) [N(v)|  1

3) p0(u, v) � p(u, v)

As a direct consequence of the new label updating rule,
vertices in the same community tend to share the same labels.
This enables the coarsened graph to preserve the structure
of the original graph. The labeling rule also leads to faster
convergence. If we randomly pick a label when more than
one label has the top frequency, even when two vertices lie in
the same community, they are quite possibly assigned different
labels. Our labeling rule can avoid such wasteful labeling.

Weighted label updating: In order to perform multi-level
graph coarsening, we extend LP for weighted graphs. We
model each intermediate graph as a weighted graph. For G

0

,
we assign a unit weight to its vertices and edges. For Gi+1

,
which is constructed from Gi and Pi, the weights are assigned
as follows:

Definition 4 (Weight function): Let Gi+1

be the coarsened
graph derived from Gi. We have Vi+1

= {C
1

, C
2

, ..., Cn},
where each node Ci is weighted as:

w(Ci) =

X

u2Ci

w(u) (1)

and each edge e = (Ci, Cj) is weighted as:

w(Ci, Cj) =

X

e(u,v)2Ei,u2Ci,v2Cj

w(e(u, v)) (2)

With weights, we can further improve the quality of label
updating. For node u, assume its neighbor v has label c.
Previously, neighbor v contributes a unit weight to c. If c has
the highest contributed weights, it becomes the label of u. In
our new approach, instead of contributing a unit weight to c,
node v contributes weight

w(e(u, v))

w(v)
(3)

The rationale is as follows. In the coarsened graph, each node
v represents a set of nodes in the original graph. Let V (v)

denote the set of nodes v represents. For a pair of nodes u
and v, node u is more likely to take v’s label if the subgraph
induced by V (u) and V (v) in the original graph has a higher
density. Based on the definition of node and edge weights in
Eq 1 and Eq 2, we know that the density of the induced graph
GV (u)[V (v) is w(e(u,v))

w(u)w(v) . When we update u’s label, w(u) in
the denominator is the same for all of u’s neighbors. Hence,
w(u) can be omitted, which leads to Eq 3.

With the weight defined, we update the label for a node u
as follows. For each label c, we define its score as

s(c) =
X

v2N(u),L(v)=c

w(e(u, v))

w(v)
(4)

where the summarization runs over all of u’s neighbors whose
label is c. Then, u will select the label c that has the maximum
score. In general, it is unlikely that two labels will have the
exact same score. When two or more labels have the same
maximal score, we apply the strategy of selecting the minimal
label as described above. In the real implementation, to allow
more potential labels to join the completion, we select the
minimum label whose score is larger than a threshold.

2) �-size Partitions: Our goal is to partition a graph so that
each partition is stored in a distributed machine. The partitions
produced by the naive LP approach may be extremely imbal-
anced: It may generate many small partitions, and a few very
large ones. The size of these large ones is often larger than
the capacity of a single machine.

To avoid generating a cluster with too many vertices, we
adopt a size threshold. Specifically, when the size of a label
(partition) reaches an upper limit, we “freeze” the label, which
means the membership of the partition can no longer change.
To ensure a balanced partition, each machine should hold
around |V |

k vertices, where k is the number of machines. We
use a smaller value |V |

�⇥k as the upper limit, where � � 1

is a parameter to control the upper limit. The rationale is as
follows.

A larger � leads to a smaller upper limit, which in turn
leads to more labels (partitions) to be produced. Note that
in the second step of Algorithm 1, we will merge small
labels using high-quality partitioning algorithms such KL [5]
or METIS [8]. Large labels whose size is close to a machine’s
capacity will be excluded from the merge step. In contrast, by
setting � > 1, we can ensure that all labels (partitions) will join
the second step to produce a high-quality final partitioning.

On the other hand, when � is too large, a closely connected
substructure is often fragmented into pieces, which in turn
will hurt the overall partitioning quality. Additionally, a larger
� may also produce a large number of labels at the end of the
coarsening step. As a result, the coarsened graph may be still
too large to be processed by the refinement step. Hence, we
need a good trade-off. Through experimental study, we find
that for most real networks, setting � as ⌦(k) produces the
best partitioning quality.

3) �-depth LP: In general, we hope the coarsening process
shrinks the graph as fast as possible without losing any
structure information. Intuitively, the two goals – fast shrinking
and information preservation – conflict with each other.

To address this problem, we first reveal an observation we
made in the shrinking process. In LP, the number of labels
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tends to decrease fast in the early iterations and then remain
relatively stable. As shown in Figure 3, in a typical real
network, after 5 or 6 iterations, the number of labels and the
normalized entropy will no longer change. Here, we define the
entropy as follows. For a partitioning P defined on n vertices,
the entropy of P is defined as �

P
pi log pi, where each pi is

the probability that a vertex belongs to Ci. We normalize the
entropy by dividing the maximal entropy value log n over n
vertices. When the entropy remains stable, the distribution of
vertices in different labels (partitions) changes marginally. In
other words, the labeling changes little.

To act on this observation, we use a parameter � to control
the shrinking speed and coarsening quality: We only run LP
for � iterations. We call such LP �-depth LP. The overall
complexity of MLP is O(t�|E|), where t is the number of
runs of �-depth LP. With the same complexity, we may choose
to run one LP with depth t�, such a strategy is denoted by
1 ⇥ t�; or alternatively run t �-depth LP, denoted by t ⇥ �.
The following simple analysis shows that generally t ⇥ � is
better than 1⇥ t�.

Let Pi be the partitioning after running the i-th �-depth LP
on Gi. Let P 0

i be the partitioning on V (G) by mapping Pi back
to the input graph G. We can establish a linear order based
on the finer relationship among partitionings P 0

0

, ...,P 0
t due to

Lemma 4. Given two partitionings P
1

,P
2

defined on the same
set, P

1

is finer than P
2

, if for each Ci 2 P
1

, Ci ✓ Cj where
Cj 2 P

2

. Thus, intuitively, in t⇥�, after each run of �-depth
LP, we enforce that vertices with the same label in Gi will
always share the same label in Gi+1

. However, in contrast,
in each iteration of 1⇥ t�, vertices with the same label may
be assigned different labels in the later iterations, thus easily
leading to oscillations. We will provide more evidence in the
experiment section.

Lemma 4: In MLP, for each i, partitioning P 0
i is finer than

P 0
i+1

.

C. The Refinement Step
Let Gt(Vt, Et) be the final graph produced by the coarsen-

ing step. We further partition Gt in the refinement step and
adopt the following guidelines: first, each label (partition) is
the smallest unit to be distributed; second, we want to create
a balanced distribution; third, we want to minimize the total
weight of crossing edges among the machines.

We discuss two ways to distribute Gt across k machines.
The first is multiprocessor scheduling (MS), the second is
weighted graph partitioning (WGP). We assume that the ma-
chines have enough space to hold the clusters to be assigned,
i.e., we have a fixed number of machines with finite but large
enough space.

1) A baseline approach: the MS model: One direct model
to meet the first two requirements is multiprocessor scheduling
(MS).

Definition 5 (MS): For a given k and a partitioning P =

{C
1

, C
2

, ..., Cn} over set V , find partitions {S
1

, S
2

, ...Sk}
over V such that (1) each Si is a union of subset in P 0 ✓ P ,
i.e., Si = [S2P0S and (2) the value max{|Si||1  i  m} is
minimum.

The first condition ensures that each label is distributed as
a whole. The second condition requires us to find the most
balanced assignment. Clearly, MS is NP-complete. We use
a greedy algorithm to solve this problem. We first sort the
subsets in P by their sizes in descending order, then we
assign each subset to the machine with the largest remaining
capacity. It is known [21] that this greedy algorithm produces
an approximation of 4/3 � 1/(3k). The greedy approach is
also efficient with a time complexity of O(|Vt| log |Vt|). Thus,
we can handle large Gt. This implies that we can perform
MS-based refinement even when the coarsening is conducted
for a limited number of levels.

However, the MS model does not follow the third guideline,
i.e., minimizing the total number of crossing edges. In general,
the MLP+MS approach (i.e., coarsening by multilevel LP
and refining by MS) is efficient but may introduce a loss in
partitioning quality.

2) An improved approach: the WGP model: To minimize
the edge cut size, we propose a weighted graph partitioning
(WGP) model.

Definition 6 (WGP): For a given k and a weighted graph
G(V,E), find a partitioning P = {C

1

, C
2

, ..., Ck} of V such
that

• (Weighted balance) for each Ci, |Wi| ⇡ W/k, where Wi

is the sum of vertex weights in Ci and W is the total
vertex weight;

• (Minimizing edge weight)
P

e2EC
w(e), where EC is the

set of edges with two ends lying in different parts of P .
This model is different from its unweighted version in two

aspects. The first is that we want to achieve balance in terms
of total vertex weight. The second is that the number of cut
edges is replaced by the total weight of crossing edges.

We use METIS to solve WGP. Note that METIS in general
can only handle graphs with a couple millions of nodes. Hence,
in our overall algorithm framework, we need to perform coars-
ening until the coarsened graph can be handled by METIS. In
Algorithm 1, we use parameter ↵ to control the size of the
graph that METIS can handle. Of course, any other weighted
graph partitioning algorithms can also be applied.

For MLP + WGP, two key issues have impact on the parti-
tioning quality. First, we hope that when a good partitioning on
the coarsest graph is projected back, the projected partitioning
is also good in the original graph. This holds due to Lemma 4.
Second, we hope that the coarsening step can ensure the
partitioning quality.

MLP addresses the second issue using the following ap-
proach. First, we use Eq 3 to ensure that edges with large
weights are coarsened into a single vertex. Second, in MLP
when Gi is coarsened to Gi+1

the following equation holds:

w(Gi+1

) = w(Gi)� w(Pi) (5)
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where w(Gi) is the total edge weight of Gi, and w(Pi) is the
total weight of edges that lie within each part of Pi. Thus,
the final goal in WGP of minimizing the total crossing edge
weight is compatible to the coarsening of large-weight edges.
Hence, the coarsening step in MLP naturally leads to a good
partitioning.

V. DISK-BASED MLP
In this section, we show that, even if we do not have a

large number of machines to hold an entire billion-node graph
in the memory, we can still partition the graph without much
performance penalty.

A. Rationale
Real life graphs are becoming bigger and denser. The

Facebook social network currently has about 1 billion nodes
and over 100 billion links. The size of the graph topology is at
least 1T. If each machine has 32G memory, we need at least
30 machines to hold the graph topology in memory. For the
web graph, hundreds of machines are needed. To make things
worse, real life graphs are becoming denser [22]. Let ¯d denote
the average degree of a graph. A graph consumes ⇥(

¯d · |V |)
memory space. It has been shown that for real life graphs, the
numbers of edges and nodes at time t, denoted by et and nt,
respectively, satisfy et / n�

t where 1 < � < 2. This shows that
real life graphs are getting denser over time. Clearly, for web-
scale graphs, memory is a bottleneck. Small organizations are
not able to work on large graphs because they cannot afford
to deploy a large memory cloud. Hence, the challenge is: Can
we run our algorithms on a big graph using limited memory?

B. Overview of our approach
Recall that we keep graphs memory resident because online

graph queries incur random accesses on a graph, and disk-
based random accesses are very slow. But for queries that only
access a portion of the graph instead of the entire graph, we
only need to keep that portion memory resident. In MLP, the
labels of the vertices are updated independently. Thus, if we
are able to schedule MLP sequentially, then we can pipeline
the execution on different portions of the graph, and at any
point of time only one portion of the graph need to be memory
resident. This enables us to partition graphs of any size.

1.Load 

from disk

2.Genrate

 label requests

3.Send 

request message

4.Wait message &

 Update label
5.Save to disk

Disk

RD LD

Block Block

Memory

Fig. 4. Process of pipeline execution

In Trinity, each machine manages a sub-graph. We divide
a sub-graph into a set of disjoint blocks so that each block
is small enough to fit in the memory of a single machine. A
block contains a set of vertices and their adjacent lists. During
computation, we load the blocks into memory one by one. For
each block, we need to ensure we can carry out the following

computation when no other blocks is in memory: each vertex
in the block sends its label to all of its neighbors, receives
messages from its neighbors, and finally updates its label. This
allows us to pipeline the process to improve the usage of the
CPU, disk I/O, and network communication.

C. Pipelined MLP (pMLP)
We now present the details of how to perform LP in a

pipelined manner.
Data Structures: Assume we are currently performing

the k-th iteration of LP on machine i. Let Vi be the vertices
that reside on machine i, and at any point, only a single block,
which contains vertices S ✓ Vi, is in the memory.

Content Usage
LD1 (vertex, label) Vi’s labels in iteration k � 1
LD2 (vertex, label) Vi’s labels in iteration k
RD (vertex, machine/label) Neighbors’ machine ID and labels

TABLE I
IN-MEMORY DICTIONARIES

Machine i is both a consumer and a producer. As a
consumer, it requests remote machines to send labels of S’s
neighboring vertices. As a producer, it needs to provide labels
of Vi to other machines upon request. Since machine i only
keeps S, which is a subset of Vi, in memory, in order to
provide Vi’s labels, it needs to perform disk I/O. To avoid
disk I/O, we keep the labels of Vi memory resident. Note that
keeping the entire Vi’s adjacent lists memory resident takes
O(

¯d · |Vi|) space, where ¯d is the average degree ( ¯d > 100

in Facebook), while keeping the labels only takes O(|Vi|)
memory space. In fact, in each machine, we keep the following
three dictionaries in memory, as shown in Table I.

The dictionaries support constant-time lookup and update
(by indexing on vertex). We use dictionary LD1 to maintain
Vi’s labels generated in the last iteration, and LD2 to maintain
Vi’s labels generated in the current iteration. At the beginning
of a new iteration, the content of LD2 is copied over to LD1.
Dictionary RD is used as an input/output buffer. A machine
generates a request in the form of (vertex, machine), meaning
it needs to know the label of the vertex that resides on the
given machine. The requests are buffered and sent in batch,
and the responses come back in the form of (vertex, label). RD
buffers and groups these incoming and outgoing messages.

Basic Pipelining Procedure: During the pipelined exe-
cution, each machine performs the five steps illustrated in
Figure 4. In the first step, we load the next block from disk.
In the second step, for each vertex u in the block, we find
the labels of its neighbors. For each remote neighbor v, we
generate a label request message in the form of (v, machine),
where machine is the machine where vertex v resides. We then
add each message into RD (using dictionary RD as a sending
buffer). In the third step, after all label request messages are
generated, we group them by machine and send each group as
a single message to the remote machine. In the fourth step, we
wait until all message requests are processed by the remote
machines and all the responses come back in the form of (v,
label) in RD, where label is the label for v. Using the label
information of neighboring nodes, we update the labels of Vi

in LD2. Finally, the block is disposed from memory, and we
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enter the next iteration. Besides updating the labels of Vi, each
machine also receives remote requests for the labels of Vi. The
requests are served by dictionary look ups in LD1.

We pipeline the above procedure to improve the effective-
ness of system resources, including CPU, disk controller, and
network bandwidth. Each of the above steps is carried out
by a single process. Through pipelining, the CPU usage and
the network usage are significantly improved. Furthermore,
all communication mechanisms, such as sending, receiving,
deadlock detection and synchronization, are provided as the
off-the-shelf components of Trinity. These off-the-shelf com-
ponents are general enough for our purpose (no customization
of algorithms or data structures are needed).

Label size estimation: After one �-depth LP, we need
to count the size of each label to construct a coarser graph.
A naive solution needs to count the sizes of labels on each
machine, then accumulate the label size on a master computer.
This solution needs overall O(k|L|) communications and
poses O(k|L|) computation overheads on the master computer,
where L is the set of labels. In the first several iterations of
MLP, |L| may be quite close to |V |. In many cases, it is larger
than one-tenth of |V |. To reduce the communication cost and
computation overheads on the master computer, we sample
vertices in each machine with probability q and estimate the
label size as n0/q, where n0 is the number of vertices with
the label in the samples. In this manner, the communication
complexity is O(|V |q). In general, we can use quite a small q
to ensure that O(|V |q) is smaller than O(k|L|) with bounded
estimation error.

Coarser graph generation: Consider the procedure to
generate Gi by Gi�1

and Pi�1

. We first use hash functions

h(l(v)) = l(v) mod k (6)

to distribute vertices v 2 Gi�1

with label l(v) and their
adjacent lists onto k machines. This hash function ensures
that vertices with the same label will be assigned on the same
machine and the graph creation job is evenly distributed over
k machines. Then, on each machine, we use the next two steps
to create Gi. First, for each label x we create a new vertex
u of Gi for all vertices in Gi�1

with the label. Meanwhile,
we create the mapping between u and V (u) (the vertices in
G

0

that u represents). Next, we create the new adjacent list
for u. We collect the new vertex id in Gi for all neighbors
of {v|v 2 Gi�1

, l(v) = x} in Gi�1

. This can be achieved
by message passing. Each of these new vertices represents a
neighbor of u in Gi. Simultaneously, we calculate the weight
of edges between u and each of of its new neighbors. Once
Gi is created, Gi�1

is dropped off.

D. Analysis
We give the analysis of complexity of time, space, and

communication for pMLP, then discuss the influence of block
size.

Complexity analysis: The time complexity is obviously
O((t� + c)|E|/k) for t runs of �-depth LP, where c accounts
for the rounds of message passing for coarser graph creation at
the end of each �-depth LP. Within each iteration of LP, overall
O(2|Vi| + |S| ¯d) memory space is needed on each machine,
where S ✓ Vi is a block of Vi. 2|Vi| accounts for the space

usage of LD1 and LD2. |S| ¯d accounts for the space usage of
RD. In general, we can set |S| ⇠ |Vi|

¯d
to limit the size of RD.

Next, we present the communication complexity analysis.
Note that we use dictionaries to avoid duplicate label requests.
Lemma 5 shows that when Vi can be entirely loaded into
memory as a block (i.e. |S| = |Vi|), the total number of
label requests under partitioning P , is exactly cv(P). When
allowing duplicate messages, the total number of messages is
obviously ec(P). Hence, by using a dictionary, in the best case
we reduce the communication complexity from ⇥(ec(P)) to
⇥(cv(P)). As shown in Section III, cv(P) is smaller than
ec(P).

Lemma 5: Given a partitioning P over graph G on k
machines, the total number of messages is ⇥(cv(P)) when
|S| = |Vi|.

When |S| is smaller than |Vi|, a constant factor ⇣ =

|Vi|
|S| will

be introduced into the above result because a remote vertex
label may be requested approximately ⇣ times. However,
whatever ⇣ is, ec(P) is always an upper bound of the total
number of messages. Thus, a more accurate estimation of the
communication complexity is ⇥(min{⇣cv(P), ec(P)}).

Block size: The block size |S| determines the memory
usage and communication overheads. The larger |S| is, the
more memory will be consumed and the fewer total com-
munications will be produced. |S| has also another indirect
influence on the overall performance. When |S| is quite
large, too many messages will be sent to other machines,
which in turn will overload these machines and degrade their
performance. Hence, |S| is critical for the balance between
the message generating speed and consuming speed, and the
tradeoff between memory usage and communication volume.
In general, the optimal block size depends on CPU speed,
parallelism efficiency, network speed, and memory size. It is
hard to quantify the optimal block size. We will explore this
by experiments.

VI. EXPERIMENTS

We present experiment results in this section. For perfor-
mance, we measure peak memory usage and running time.
For partitioning quality, we measure edge cut size (ec), total
communication volume (cv), and imbalance, where imbalance
is measured by the maximal imbalance or the percentage by
which the size of the largest part exceeds the average partition
size. We evaluate two versions of our solution: LP+MS and
MLP+METIS.

We further compare our solutions to two typical versions of
METIS as well as the baseline random partition approach. One
is recursive bisection with RM, denoted by rb+rm. The other is
k-way partitioning with sorted HEM, denoted by kway+shem.
Sorted HEM (SHEM) is identical to HEM except that vertices
are matched in the descending order of degree so that it
will match small-degree vertices as well. In general, SHEM
shrinks a graph faster than HEM. For comparison with random
partitioning, we generate 10 random partitionings, then report
the average measures.

A. Sequential MLP
We implement a sequential version of MLP in C (the same

as METIS), and then compare it to the sequential version of
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METIS. We run all experiments on a PC with Intel Xeon at
2.67GHz, 48G memory running 64-bit Windows server 2008.
We compare MLP and its competitors on both real life graphs
and synthetic graphs.

1) Experiments on real life graphs:
Datasets: We use three large graphs: LiveJournal, Wik-

iTalk, and Patents 4. LiveJournal is an online social network, in
which nodes represent users and edges represent the friendship
relationship. In the WikiTalk graph, nodes represent Wikipedia
users, and a directed edge from node i to node j represents
that user i at edited a talk page of user j at least once. Patents
is the citation network of patents in the U.S.

Network #Vertex # Edge size (M)
WikiTalk 2394385 4659565 53.8
Patents 3774768 16518947 154.8

LiveJournal 4846609 42851237 363.9
TABLE II

BASIC INFORMATION OF REAL GRAPHS

Partitioning quality: The first two plots of Figure 5 show
the quality of partitioning for real life graphs. The quality is
measured by cv (communication volume) and ec (edge cut).
The results were obtained by running MLP+METIS with 3⇥5

coarsening strategy and LP+MS with one 15-depth LP. As
we can see, our solutions and METIS produced partitions
of significantly better quality than random partitioning. The
comparisons show that MLP+METIS’s quality is comparable
to that of METIS. LP+MS’s quality is weaker than METIS but
still better than random partitioning. The imbalance results are
omitted since for both our solutions and its competitors on all
tested networks, the maximal imbalance is less than 3%, which
is minor and can be ignored.

Performance: The last two plots in Figure 5 show the
performance results of various partitioning algorithms. The
results were obtained by running MLP+METIS with 3 ⇥ 5

coarsening strategy and LP+MS with one 15-depth LP. The
results imply that a minor sacrifice of quality brings signifi-
cant performance improvement. In general, MLP+METIS and
LP+MS consume significantly less memory than METIS. We
can see that MLP+METIS or LP+MS consistently runs faster
than METIS on different real networks. In some cases (e.g.,
memory usage on LiveJournal, running time on WikiTalk), the
performance of our solutions is one order of magnitude better
than METIS.

Convergence: In this experiment, we compare the speed
of convergence of different coarsening strategies. We show the
results on LiveJournal in Figure 6. Results on other graphs

4Download from http://snap.stanford.edu/index.html

are similar and are omitted here to save space. From the
results, we can see that SHEM converges fastest since it pays
special attention to matching small-degree vertices. The speed
of convergence of two of our strategies is close to that of
SHEM. We also compared different a ⇥ b strategies of our
solution. We found that 3 ⇥ 5 performs the best. In 3 ⇥ 5,
after each 5-depth LP there is a clear drop in the number
of labels. This observation indicates that by creating a new
graph and then running LP on the new graph we reduce the
graph size further. We also found that by 3⇥5 coarsening, the
coarsest graph is almost two orders of magnitude smaller than
the original graph. This is really important when partitioning
a large graph with billion nodes.
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Fig. 6. Convergence of coarsening on LiveJournal

2) Experiments on synthetic graphs:
Synthetic graph model: We generated a collection of syn-

thetic graphs with embedded communities to test the effective-
ness and efficiency of MLP. We used the graph model [?] that
generates synthetic graphs with varying degree of “clearness”
of community structure. There are three parameters ↵,�, µ in
the model. Both degree and community size follow power-
law distribution with exponents ↵ and �, respectively. The
parameter µ controls the proportion of neighbors of a vertex
that reside in other communities. By tuning µ, we vary the
clearness of the community structure. We generated five graphs
with 1 million vertices and approximately 10.6 million edges
by setting ↵ = 2,� = 3. The parameter µ varied from 0.1 to
0.5. As µ becomes smaller, the boundaries of the communities
in the graph become clearer.

Partition quality and performance: Table III measures the
quality and the performance of METIS and our partitioning
method on synthetic graphs. We ran MLP+METIS under the
1⇥10 coarsening strategy. We found that MLP uses much less
memory and time than the two versions of METIS. The quality
of MLP, measured by ec (edge cut) and cv (communication
volumn), is not only comparable but in some cases better than
METIS. The partitioning quality of MLP is consistently better
than METIS(kway+schem) for different µ. It is also clear that
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µ cv (⇥106) ec (⇥106) Memory (MB) Time(s) Imbalance Ratio
M1 M2 MLP M1 M2 MLP M1 M2 MLP M1 M2 MLP M1 M2 MLP

0.1 0.64 0.89 0.64 0.40 0.66 0.40 994.74 591.47 352.08 12.31 4.37 5.117 1.00 1.00 1.03
0.2 1.61 2.01 1.59 1.06 1.62 1.05 1162.18 1007.22 354.98 19.67 9.58 7.33 1.00 1.02 1.03
0.3 2.17 2.64 2.20 1.60 2.43 1.61 1541.54 1359.48 406.07 21.47 12.15 8.46 1.00 1.03 1.03
0.4 2.80 3.29 3.01 2.23 3.18 2.39 1863.83 1745.54 516.50 26.35 18.61 9.67 1.00 1.03 1.03
0.5 3.31 3.83 3.83 2.85 3.96 3.53 2192.56 2091.88 646.47 29.97 27.32 12.22 1.00 1.00 1.03

TABLE III
QUALITY AND PERFORMANCE ON SYNTHETIC NETWORKS. M1 IS METIS(RB+RM), M2 IS METIS(KWAY+SHEM).

when boundaries between communities are clearer (smaller
µ), MLP’s quality is closer to that of METIS(rb+rm). The
imbalance of all solutions can be ignored since the maximal
imbalance is at most 3%.

In summary, the results on the synthetic graphs with embed-
ded communities sufficiently show that MLP can effectively
leverage the community structure of graphs to generate a
good partitioning with less memory and time. In contrast,
METIS, which is based on the maximal matching method, is
not community-aware when it coarsens a graph, thus heavily
relying on costly refinement in the uncoarsening phase to
ensure the solution quality. As a result, METIS incurs more
time and space costs.

B. pMLP
We next examine the scalability and effectiveness of pMLP.

The following results were all obtained by running pMLP on
Trinity.

Speedup: To study the efficiency of pMLP, we ran pMLP
under the 3⇥ 5 coarsening strategy on the LiveJournal graph
using 2 to 8 machines. The results are shown in Figure 7. We
can see that the running time almost linearly decreases with
the number of machines. We achieved almost 6 speedup on 8
machines, indicating that our parallel solution is effective.
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Fig. 7. Parallelism efficiency of pMLP
Block size: In this experiment, we examined the influence

of block size (for a set of vertices Vi on a machine, block size
determines the number of blocks). The experimental settings
were the same as used in previous experiments, and the only
difference is that we ran it on 8 machines with a varying
numbers of blocks. As shown in Figure 8(a), the number of
messages increases with the number of blocks. We also show
ec and cv of the partitioning. We can see that, when there
is only one block, the system produces a minimal number of
messages (which is close to cv). On the other hand, when
the number of blocks is very large, many redundant messages
are generated and the total number of messages is close the
theoretical worst case of ec. The running time under different
block numbers is given in Figure 8(b). As expected, an optimal
number of blocks exists. In our experiment, 4 blocks led to
the least time.
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Fig. 8. Performance of partitioning algorithms.

Scalability: We generated synthetic graphs with the
numbers of vertices ranging from 64M to 512M and an
average degree of 26 using the RMAT [?] graph generator (a
widely-used model to generate graphs with power-law degree
distribution). The RMAT model has four parameters a, b, c, d.
We set the parameters 0.45, 0.15, 0.15, and 0.25, respectively.
We ran MLP+METIS under the 5 ⇥ 5 coarsening strategy.
All other experiment settings are the same as that used in the
previous experiment. We used 8 machines, each of which had
48G of memory. The results are shown in Figure 9. As we
can see, the running time almost increases linearly with the
growth of the graph size.
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Fig. 9. Scalability to billion-node graphs

We want to highlight that on the largest graph, which has
512M nodes and 6.5G edges, it only takes about 4 hours and
8⇥48G total memory for pMLP to finish the partitioning job.
This is the largest graph that has ever been partitioned to the
best of our knowledge. For this graph, after 5⇥ 5 coarsening,
the coarsest graph has only about 1.4M nodes, which is a
significant reduction. This reduction is the key reason why
pMLP can scale up to web-scale graphs. For all the tested large
graphs, the maximal imbalance is less than 5%. The RMAT
graphs do not necessarily have community structures. Hence,
it is less possible to find a partitioning that is significantly
better than a random partitioning. In spite of this, the ec and
cv of the partitioning produced by pMLP is only 90% of that of
random partitioning. For web-scale real life graphs that contain
communities, the partitioning results will be even better.
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VII. RELATED WORK

Large graph partitioning: The problem of graph par-
titioning is an NP-complete problem [23]. Earlier efforts
focused on designing effective sub-optimal algorithms. Typical
algorithms of this class include local search based solutions
(such as KL [5] and FM [6]), which swap heuristically
selected pairs of nodes, simulated annealing [24], and genetic
algorithm [25] based solutions, etc. To scale up to graphs with
million of nodes, multi-level partitioning solutions, such as
Metis [8], Chaco [7], and Scotch [10], have been proposed.
These algorithms are further parallelized to handle even larger
graphs, and examples of these parallelized solutions include
ParMetis [11] and Pt-Scotch [12]. To summarize, existing
solutions can partition graphs with up to tens of millions
nodes. The method presented in this paper is the first that
is able to partition billion-node graphs on a general-purpose
distributed memory system.

Distributed graph computing platform: Our solution is
built on top of Trinity [17], but the algorithm is portable
to other distributed graph computing schemes that support
efficient vertex-centric programming and message passing.
In recent years, a variety of distributed graph computing
platforms have emerged, including PBGL [26], Pregel [15],
InfiniteGraph [28], HyperGraphDB [29], and many others are
under development [30]. Most of them by default use the
random partitioning to partition the data. Many of them, such
as PBGL and Pregel, provide the flexibility to allow users to
specify the partitioning. However, none of them provides an
efficient algorithm or solution to partition a large graph.

Label propagation: Raghavan et al. [31] first proposed
using label propagation (LP) to detect communities in real
networks. Later, Barber et al [32] reformulated the naive LP
approach to an equivalent optimization problem. Leung et
al. [33] found that LP leads to ‘monster’ communities that
contain more than half of the vertices in the graph, and use
a parameter to penalize a label by distance. LP was further
improved to detect communities in bipartite networks [34], to
detect overlapping communities [35], and to identify core, as
well as whisker, communities [36]. LP also offers applications
for compressing a large social network [37]. However, to the
best of our knowledge, LP is not used for partitioning. The
label updating rules proposed in this paper has rarely been
studied in previous works.

VIII. CONCLUSION

In this paper, we propose a novel approach for partitioning
billion-node graphs on a general-purpose distributed memory
system. Our approach, which is called MLP, uses multilevel
label propagation to iteratively coarsen a graph until the
coarsened graph is small enough, and then uses a high-
quality off-the-shelf partitioning algorithms to generate the
final partitioning on the coarsened graph. Due to the semantic-
awareness and efficiency of LP, MLP is more efficient, easily
parallelized, and effective than existing approaches. Extensive
experiments on large real graphs and synthetic graphs verify
the efficiency and effectiveness of MLP. MLP successfully
finds good partitionings on billion-node graphs with acceptable
memory and time, which shows that MLP can scale up to
billion-node graphs.
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