Real-time Knowledge Graph Serving

Bin Shao

Microsoft Research Asia (Beijing, China)

This talk is about knowledge graph serving from a pragmatic point of view ...

Appetizer

Find the people that have the same profession with Bill Gates, and speak at least 3 languages.

Find the triangles containing the vertex 'Beijing' with a sampling rate of 4%.

Outline

- Knowledge graph serving scenarios
- General design principles of knowledge graph serving systems
- Representative graph systems
- Real-time query processing
- Knowledge serving application: symbolic reasoning

Knowledge Serving Scenarios

A real-life relation search scenario A real-life relation sear
A News Headline
Tom Cruise Admits Katie Holmes Divorced Him To Protect ! A real-life relation search scenario

Tom Cruise Admits Katie Holmes Divorced Him To Protect Suri From Scientology

Tom Cruise – people person marriage – (marriage) – time event person – Katie Holmes 1 Tom Cruise – people.person.marriage – (marriage) – time.event.person.parent – Katie Holmes

1 Tom Cruise – people.person.marriage – (marriage) – time.event.person – Katie Holmes

1 Tom Cruise – people.person.children – A real-life relation search scenario

2 News Headline

2 Tom Cruise – people.person.marriage – (marriage) – time.event.person – Katie Holmes

2 Tom Cruise – people.person.children – (Suri Cruise) – people.person.parent – K

⁴ ...

-
- 3 Tom Cruise people.person.marriage (marriage) time.event.person Katie Holmes
3 Tom Cruise people.person.marriage (marriage) time.event.person Katie Holmes
3 Tom Cruise people.person.children (Suri Cr
-

Relation search in knowledge graph Relation search in knowledge
 Entity A \cdots \sim **Entity B**

Multi-hop Relation Search

C Discover the hidden relations between entities

C Enable more than what entity indexes can support $\text{Relation search in knowledge graph}$
 $\text{Cry } \mathbf{A} \cdots \rightarrow \text{Entity } \mathbf{B}$
 $\text{Eib} \mathbf{A} \cdots \mathbf{A} \rightarrow \text{Eib} \mathbf{B}$
 $\text{Discover the hidden relations between entities}$
 $\text{Enable more than what entity indexes can support}$ $\mathsf{R} \mathsf{P} \mathsf{R} \mathsf{P} \mathsf{$ $\begin{array}{c} \displaystyle {\sf Relation~search~in~kn} \end{array}$ Entity A \cdots \sim Entity B

-
-

Search results of Google

actress Katie Holmes fled their marriage to protect their daughter from ...

Search results of Bing

Q

Tom Cruise, Katie Holmes

MS Beta 4,340,000 RESULTS Any time \sim

News about Tom Cruise, Katie Holmes

bing.com/news

KATIE HOLMES DATING JAMIE FOXX RUMORS CONTINUE AS THE ACTRESS' EX-HUSBAND, TOM **CRUISE WAS REPORTED TO HAVE FINALLY MOVED ON** Travelers Today · 3 days ago Katie Holmes dating rumors again sparked as her exhusband Tom Cruise was reportedly dating other

Is Tom Cruise Dating Laura Prepon - Katie Holmes Ex Lands Scientologist Girlfriend? The National Ledger · 10 days ago

woman and that...

Katie Holmes Celebrates Suri Cruise's 8th Birthday WebProNews · 3 days ago

Images of Tom Cruise, Katie Holmes

bing.com/images

Katie Holmes Celebrates Suri Cruise's 8th Birthday ...

www.webpronews.com/katie-holmes-celebrates-suri-cruises-8th... v Katie Holmes helped daughter Suri Cruise celebrate her 8th birthday in style. She treated her daughter, along with a few guests, to dinner at Nobu Next...

Tom Cruise: Katie Holmes Divorce Was A Surprise (UPDATE) www.huffingtonpost.com/2013/04/09/tom-cruise-katie-holmes-divorce... * Apr 09, 2013 · Tom Cruise says Katie Holmes divorce was a surprise. Here, the former

couple is pictured at the "Mission Impossible: Ghost Protocol" premiere in Dec. 2011.

See results for

Tom Cruise Film Actor Tom Cruise, is an American film actor and producer. He

has been nominated for three Academy Awards and h...

Related searches

Tom Cruise Katie Holmes Married Tom Cruise Katie Holmes Gossip Tom Cruise Katie Holmes Photos Tom Cruise Katie Holmes Baby Tom Cruise Katie Holmes Unusual Marriage Katie Holmes Tom Cruise Split Tom Cruise Katie Holmes Suri Custody Settlement **Leah Remini Problems Started Tom Cruise Wedding**

Relation search in knowledge graph

Prev Page Next Page

Relation search in knowledge graph

Satori

Add Search

Tom Cruise, Mimi Rogers, Nicole Kidman, Katie Holmes

Tom Cruise

Tom Cruise (born Thomas Cruise Mapother IV; July 3, 1962), is an American film actor and producer. He has been nominated for three Academy Awards and has won three Golden Globe Awards. He started his career at age 19 in the 1981 film Endless Love. After portraying supporting roles in Taps (1981) and The Outsiders (1983), his first leading role was in Risky Business, released in August 1983. Cruise became a full-fledged movie...

Types

award.nominee, award.winner, film.actor, film.director, film.producer, film.story_contributor ...

General Design Principles

Challenges of serving knowledge graphs

- Data size
	- in the scale of terabytes
- mso:countr mso:film mso:initial release date nso:film.form rating systen ement unit.dated monev value **ncompact** mso:contert_rating_system mso:estimated budget mso:rating mso:tagline mso:film.content rating mso:type.text mso:film mso:goof so:tvpe.datetime nso:location.sovereign mso:type.decima mso:date mso:countr mso:film.film mso:film mso:film mso:film.release film.venue mso:color nso:type.tex mso:trivia mso:filmin mso:region mso:measurement_unit.time_interva mso:type.tex so:produc mso:sound_mix medium mso:filn mso:location.location mso:type.string msotasne
- Complex data schema
	- Rich relations

Challenges of serving knowledge graphs

- Data size
	- In the scale of terabytes

- Complex data schema
	- Rich relations
	- Multi-typed entities

The needs ultimately determine the design

The first important rule: there is no one-size-fits-all system!

First rule: no one-size-fits-all system

Characteristics of parallel graph processing

- Random access (poor locality)
	- For a node, its adjacent nodes cannot be accessed without "jumping" in the storage no matter how you represent a graph
	- Not cache-friendly, data reuse is hard

- Hard to get an efficient "divide and conquer" solution
- Data driven
	- the structure of computations is not known in advance
- High data access to computation ratio

Online queries vs. offline analytics

- Online query processing is usually optimized for response time
- Offline analytics is usually optimized for throughput
- Compared to offline analytics, it is harder to optimize online queries
	- Online queries are sensitive to latency
	- It is difficult to predict the data access patterns of online queries

Query response time:

data access + communication + computation

System design choice

- Main storage (storage backend)
- Index
- Communication paradigm: two-sided vs. one-sided
- Scale out or scale up
- ACID transactions or not

System design choice

- Main storage (storage backend)
- Index
- Communication paradigm: two-sided vs. one-sided
- Scale out or scale up
- ACID transactions or not

Graph may be in the jail of storage

- Many existing data management systems can be used to process graphs
- Many of them are mature, but not for graphs
	- RDBMS, MapReduce
	- The commonest graph operation "traversal" incurs excessive amount of joins

Graph in the Jail of the storage

Traverse graph using joins in RDBMS

Get neighbors of N1

 $\begin{array}{ccc}\n\text{ins in RDBMS} \\
\text{if} \\
\text{if} \\
\text{if} \\
\text{if} \\
\text{if} \\
\text{if } \\
\text{if$ ins in RDBMS
 $\begin{array}{ccc}\n\text{1} & \text{3} & \text{Get neighbors of N1}\n\end{array}$
 $\begin{array}{ccc}\n\text{2} & \text{4} & \text{SELECT *}\n\end{array}$
 $\begin{array}{ccc}\n\text{2} & \text{1} & \text{FROM N}\n\end{array}$
 $\begin{array}{ccc}\n\text{2} & \text{1} & \text{FROM N}\n\end{array}$
 $\begin{array}{ccc}\n\text{2} & \text{I} & \text{FROM N}\n\end{array}$
 $\begin{array}{ccc}\n\text{2} & \$ The Set of SELECT * MS
Get neighbors of N1
SELECT *
FROM N
LEFT JOIN E ON N.ID = E.dst
WHERE E.src = 1 MS
Get neighbors of N1
select *
from n
left join e on _{N.ID =} e.dst
where e.src = 1 **WHERE E.src = 1**

Multi-way join vs. graph traversal

System design choice

- Main storage (storage backend)
- Index
- Communication paradigm: two-sided vs. one-sided
- Scale out or scale up
- ACID Transactions or not

Index

It is costly to index graph structures, use it wisely.

Index-based subgraph matching

Reference: Sun VLDB 2012

Index-based subgraph matching

Reference: Sun VLDB 2012

System design choice

- Main storage (storage backend)
- Index
- Communication paradigm: two-sided vs. one-sided
- Scale out or scale up
- ACID transactions or not

Two-sided communication

One-sided communication

System design choice

- Main storage (storage backend)
- Index
- Communication paradigm: two-sided vs. one-sided
- Scale out or scale up
- ACID transactions or not

Design choice: scale-up vs. scale-out

• Supercomputer model

- Programming model simple and efficient
	- shared memory address space
- Expensive
- Hardware is your ultimate limit
- Distributed cluster model
	- Programming model is complex
	- Relatively cheaper
	- Flexible to meet a variety of needs
Scale "OUT", not "UP"

System design choice

- Main storage (storage backend)
- Index
- Communication paradigm: two-sided vs. one-sided
- Scale out or scale up
- ACID transactions or not

Think twice before diving into transactions

- Pros
	- Strong data consistency guarantee
- Cons
	- The hell of referential integrity
	- The disaster of cascading rollback
	- Multi-round network communications per commit for distributed transactions

The hell of referential integrity

Lady Gaga in Freebase

The hell of referential integrity

The disaster of cascading rollback

Representative Graph Systems

Existing systems

- Mature data processing systems
	- RDBMS
	- MapReduce systems
- Systems specialized for certain graph operations
	- PageRank, ……
- General-purpose graph processing systems
	- Neo4j, Trinity, Horton, HyperGraphDB, TinkerGraph, InfiniteGraph, Cayley, Titan, PEGASUS, Pregel, Giraph, GraphLab, GraphChi, GraphX …

Representative graph processing systems

Representative graph processing paradigms

- MapReduce for graph processing
- Vertex-centric graph computation
- Matrix arithmetic
- Graph embedding

MapReduce for Graph Processing

MapReduce

- High latency, yet high throughput general purpose data processing platform
- Optimized for offline analytics on large data partitioned over hundreds of machines

Processing graph using MapReduce

- No online query support
- The data model of MapReduce cannot represent graph natively
	- Graph algorithms cannot be expressed intuitively
- Inefficiency for graph processing
	- Intermediate results of each iteration need to be materialized
	- Entire graph structure need to be sent over network iteration after iteration, this incurs a large amount of unnecessary data movements

MapReduce

- De facto of distributed large data processing
- Great scalability: supports extremely large data, but unfortunately not for graphs

Vertex-centric graph computation

Basic idea: think like a vertex!

Computation model

- Graph computation is modeled as many supersteps
- Each vertex reads messages sent in the previous superstep
- Each vertex performs computations in parallel
- Each vertex can send messages to other vertices at the end of an iteration

Vertex-centric vs. MapReduce

- Exploits fine-grained parallelism at the node level
- Pregel doesn't move graph partitions over network, only messages among nodes are passed at the end of each iteration
- Many graph algorithms cannot be expressed using vertex-centric computation model intuitively and elegantly

Communication optimization

Bipartite view of a graph on a local machine

Message cache ("80/20" rule in real graphs)

Matrix arithmetic

Representative system: Pegasus

- Open source large graph mining system
	- Implemented on Hadoop
- Convert graph mining operations into iterative matrix-vector multiplications
- Pegasus uses an n by n matrix M and a vector v of size n to represent graphs

Generalized Iterated Matrix-Vector Multiplication

$$
M \times \nu = \nu' \text{ , where } \nu_i' \text{ is } \boxed{\sum_{j=1}^n m_{i,j} \times \nu_j}
$$

- Three primitive graph mining operations
	- combine $\mathcal{Z}(m_{i,j}, v)$: myiltiply $m_{i,j}$ and v_j
	- $combineAll_i(x_1, \ldots, x_n)$: sum *n* all the multiplication results from *combine2*
	- $assign(v_i, v_{new})$: decide how to update v_i with v_{new}
- Graph mining problems are solved by customizing the three operations

Source: Pegasus, Kevin Andryc, 2011

combine2 $(m_{i,j}, v_j) = m_{i,j} \times v_j$. combineAll_i $(x_1,...,x_n)$ = MIN{ x_j | $j = 1..n$ } assign (v_i, v_{new}) = MIN (v_i, v_{new}) .

combine2 $(m_{i,j}, v_j) = m_{i,j} \times v_j$. combineAll_i $(x_1,...,x_n)$ = MIN{ x_j | $j = 1..n$ } $\text{assign}(v_i, v_{new}) = \text{MIN}(v_i, v_{new}).$

combine2 $(m_{i,j}, v_j) = m_{i,j} \times v_j$. combineAll_i $(x_1,...,x_n)$ = MIN{ x_j | $j = 1..n$ } $\text{assign}(v_i, v_{new}) = \text{MIN}(v_i, v_{new}).$

combine2 $(m_{i,j}, v_j) = m_{i,j} \times v_j$. combineAll_i $(x_1,...,x_n)$ = MIN{ x_j | $j = 1..n$ } $\text{assign}(v_i, v_{new}) = \text{MIN}(v_i, v_{new}).$

combine2 $(m_{i,j}, v_j) = m_{i,j} \times v_j$. combineAll_i $(x_1,...,x_n)$ = MIN{ x_j | $j = 1..n$ } $\text{assign}(v_i, v_{new}) = \text{MIN}(v_i, v_{new}).$

combine2 $(m_{i,j}, v_j) = m_{i,j} \times v_j$. combineAll_i $(x_1,...,x_n)$ = MIN{ x_j | $j = 1..n$ } $\text{assign}(v_i, v_{new}) = \text{MIN}(v_i, v_{new}).$
Example: connected components

combineAll_i $(x_1,...,x_n)$ = MIN{ x_j | $j = 1..n$ } $\text{assign}(v_i, v_{new}) = \text{MIN}(v_i, v_{new}).$

Adapted from: Pegasus, Kevin Andryc, 2011

Example: connected components

 $\text{assign}(v_i, v_{new}) = \text{MIN}(v_i, v_{new}).$

Adapted from: Pegasus, Kevin Andryc, 2011

Graph embedding

Graph embedding

• Embed a graph into a geometric space so that distances in the space preserve the shortest distances in the graph

Application: distance oracle

- Choose a small number of landmarks (~100)
	- Heuristics: Degree , betweenness, …
- Calculate the distances from each landmark to all other vertices using BFS starting from each landmark
- Calculate the embedding of landmarks using the *downhill simplex* method according to the distances between landmarks
- Calculate the embedding of other vertices using the *downhill simplex* method according to the distances from these vertices to landmarks

Distance oracle in a nutshell

• Step 1: Using sketch to give the lower and upper bound of the shortest distance between two vertices

 $|d(u, l) - d(l, v)| \leq d(u, v) \leq d(u, l) + d(l, v)$

Triangle Inequality

 $l(u, v) \leq d(u, v) \leq r(u, v)$

Distance oracle in a nutshell

• Step 2: Refining results using graph embedding

$$
d(u, v) = \begin{cases} \bar{d}(u, v) & \text{if } l(u, v) \le \bar{d}_{u, v} \le r(u, v); \\ l(u, v) & \text{if } \bar{d}_{u, v} < l(u, v); \\ r(u, v) & \text{if } \bar{d}_{u, v} > r(u, v); \end{cases}
$$

 $\bar{d}(u,v)$ is the coordinate distance in the embedding space

Real-time Query Processing

Query processing

- Query processing
• Where do latencies come from?
- Index-free query processing

People search challenge in Facebook graph

• Among adult Facebook users, the average number of friends is 338.

338 +338 x 338 +338 x 338 x 338 =38,729,054

Can we search a person in one's 3-hop neighborhood within 500 ms?

Latency, Bandwidth, and Capacity

each disk seek + read: > 10 ms

RAM-based approach

• DRAM latency: 100 ns

10 million reads/writes per second

1 million vertex-level read/write per second

38,729,054 vertices to access, it takes at least 38 seconds.

Where do latencies come from?

Single-threaded, multi-threaded, synchronous, asynchronous

Multi-cores, Multi-nodes

DRAM, Flash, or Disk

Move computation, instead of data!

Source: The datacenter as a computer (book)

If you care about latency, do not use the sharedmemory model in a distributed setting.

Lessons learned so far (how to reduce latencies)

- RAM (hardware sometimes does matter a lot)
	- The stupid buy faster computers, smart ones write better programs?
- Avoid moving data

Lessons learned so far (how to reduce latencies)

- RAM (hardware sometimes does matter a lot)
	- The stupid buy faster computers, smart ones write better programs?

Lessons learned so far

- RAM (Hardware sometimes does matter a lot)
	- The stupid buy faster computers, smart ones write better programs?
- Avoid moving data • Avoid unnecessary synchronizations Makes programming harder

Asynchronous fan-out search

 n is the server count d is the average degree

Cost of Graph Exploration

The scalability of fan-out search

Online query processing

• Where do latencies come from?

• Index-free query processing

Online query example: subgraph matching

Procedure:

- 1. Break a graph into basic units (edges, paths, frequent subgraphs, …)
- 2. Build index for every possible basic unit
- 3. Decompose a query into multiple basic unit queries, and join the results

Case study: distributed subgraph matching

Procedure:

- 1. Break a query into basic units
- 2. Match the basic units in parallel on the fly
- 3. Join the results

Subgraph matching

Subgraph matching

Basic unit for distributed subgraph matching

As a basic unit, which one is the best?

Basic unit for distributed subgraph matching

As a basic unit, which one is the best?

Basic unit for distributed subgraph matching

- e^l \bigvee^d Easy to decompose
	- Height is always one
		- It at most needs to cross the network once

As a basic unit, which one is the best?

Query decomposition

Query decomposition

Query optimization problems

- How to choose a good query decomposition
- How to choose a good execution order
- How to choose a good join order

Demo

How can we make it fast enough

- Big data
	- hmm, we have a large variety of tools available
- But, how do we handle "big schema" …

If we treat everything as texts and build indexes for these piles of words

- Inefficient data processing (weakly-typed system)
- Limited search functionality we can provide

Beat Big Schema with …

What is the huge amount of code for?

• Provides extremely fine-grained data access methods best matching the data

Symbolic Reasoning

The evolution of knowledge representation

Why is a big knowledge graph not enough?

- Large knowledge graphs have billions of facts
- However, it doesn't provide much help in logic reasoning
	- o The knowledge is not symbolized logic knowledge
	- o Lack of reasoning rules allow machines to do reasoning automatically
	- o More importantly, lack of common sense

The pyramid of knowledge

Use graph transformation to do logic deduction

Graph transformation: whenever we see a graph G_a with a certain pattern p, replace it with a graph G_h .

Al Magazine Volume 3 Number 4 (1982) (© AAAI)

Instead of Minsky's 13-page answer, …

Why People Think Computers Can't

Marvin Minsky

"Why" question

MIT Cambridge, Massachusetts

Why can Albert Einstein think? Why can Albert Einstein think?
Albert Einstein was a Theoretical physics. Why can't computers think?

O_O am not a computer.

Input interpretation: Albert Einstein (physicist) Basic information: full name Albert Einstein date of birth Friday, March 14, 1879 (137 years ago) place of birth Ulm, Baden-Wurttemberg, Germany Why can't computers think?

date of death Monday, April 18, 1955 (age: 76 years) (61 years ago) place of death Princeton, New Jersey, United States

What can't computer think?

Eviebot

Input interpretation:

computer (English word)

Definitions:

1 noun a machine for performing calculations automatically

2 noun an expert at calculation or operating calculating machines

WolframAlpha

Why can Albert Einstein think?

Albert Einstein is was a famous Scientist.

Why can't computers think?

Why can't computers think? Think? Think? It depends on your definition.

Our "shallow" yet reasonable answer

References

- Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, Jonathan Berry. Challenges in parallel graph processing. Parallel Processing Letters 2007.
- Bin Shao, Haixun Wang, Yatao Li. Trinity: a distributed graph engine on a memory cloud. SIGMOD 2013.
- Luiz André Barroso, Urs Hoelzle. The datacenter as a computer: An introduction to the design of warehouse-scale machines. 2009.
- Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. SIGMOD 2010.
- Aapo Kyrola, Guy Blelloch, Carlos Guestrin. GraphChi: Large-scale graph computation on just a PC. OSDI 2012.
- Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Efficient subgraph matching on billion node graphs. PVLDB 2012.
- U Kang, Charalampos E. Tsourakakis, Christos Faloutsos. PEGASUS: A peta-scale graph mining system implementation and observations. ICDM 2009.
- Xiaohan Zhao, Alessandra Sala, Haitao Zheng, Ben Y. Zhao. Fast and Scalable Analysis of Massive Social Graphs. CoRR 2011.
- Zichao Qi, Yanghua Xiao, Bin Shao, Haixun Wang. Toward a Distance Oracle for Billion-Node Graphs. PVLDB 2014.

Thanks!

https://www.graphengine.io/ https://www.binshao.info/