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Appetizer 



Find the people that have the same profession with Bill Gates, and speak at least 3 languages.

Demo Video



Find the triangles containing the vertex ‘Beijing’ with a sampling rate of 4%.

Demo Video



Outline

• Knowledge graph serving scenarios

• General design principles of knowledge graph serving systems

• Representative graph systems

• Real-time query processing

• Knowledge serving application: symbolic reasoning



Knowledge Serving Scenarios



A real-life relation search scenario
A News Headline

Tom Cruise Admits Katie Holmes Divorced Him To Protect Suri From Scientology 

1 Tom Cruise – people.person.marriage – (marriage ) – time.event.person – Katie Holmes

2 Tom Cruise – people.person.children – (Suri Cruise) – people.person.parent – Katie Holmes

3 Tom Cruise – film.actor.film – (Bambi Verleihung 2007) – film.filmactor – Katie Holmes

4 . . .



Relation search in knowledge graph

Multi-hop Relation Search

Discover the hidden relations between entities

Enable more than what entity indexes can support

Entity A                Entity B 



Search results of Google



Search results of Bing



Relation search in knowledge graph

94 Results (103 ms)



Relation search in knowledge graph



General Design Principles



Challenges of serving knowledge graphs

• Data size
• in the scale of terabytes

• Complex data schema
• Rich relations



Challenges of serving knowledge graphs

• Data size
• In the scale of terabytes

• Complex data schema
• Rich relations
• Multi-typed entities

123 mso/type.object.name “Pal”

123 mso/type.object.type  
mso/organism.dog
123 mso/organism.dog.breeds “Collie Rough”

123 mso/type.object.type mso/film.actor
123 mso/film.actor.film 789
789 mso/type.object.type mso/film.film
789 mso/type.object.name “Lassie Come 
Home”

“Pal”



How to serve knowledge?

Table + column indexes

Free text search

Native graph exploration

Triplets/RDF

Column Index



The needs ultimately determine the design

The first important rule: there is no one-size-fits-all system!



First rule: no one-size-fits-all system

complexity

si
ze Disk-based Key-value Store

Column Store

Document  Store

Graph  System

Typical RDBMS

SQL Comfort Zone



Characteristics of parallel graph processing
• Random access (poor locality)

• For a node, its adjacent nodes cannot be accessed without “jumping” in the storage 
no matter how you represent a graph

• Not cache-friendly, data reuse is hard

• It is hard to partition data
• Difficult to extract parallelism by partitioning data
• Hard to get an efficient “divide and conquer” solution

• Data driven
• the structure of computations is not known in advance

• High data access to computation ratio 

Reference: Challenges in parallel graph processing



Online queries vs. offline analytics 

• Online query processing is usually optimized for response time

• Offline analytics is usually optimized for throughput

• Compared to offline analytics, it is harder to optimize online queries 
• Online queries are sensitive to latency
• It is difficult to predict the data access patterns of online queries



High data access to computation ratio



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID transactions or not



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID transactions or not



Graph may be in the jail of storage

Graph in the 
Jail of the storage

• Many existing data management systems can be used to 
process graphs

• Many of them are mature, but not for graphs
• RDBMS, MapReduce
• The commonest graph operation “traversal” incurs 

excessive amount of joins



Traverse graph using joins in RDBMS

ID name ….

1 N1 …

2 N2 …

3 N3 …

4 N4 …

5 N5 …

6 N6 …

… … …

src dst

1 3

2 4

2 1

4 3

1 5

1 6

… …

Node Table: N Edge Table: E

Get neighbors of N1

SELECT * 
FROM N
LEFT JOIN E ON N.ID = E.dst
WHERE E.src = 1



Multi-way join vs. graph traversal

Company Incident Problem

… ID

Company

ID1 ID2

ID …

Incident

ID3 ID4

ID …

Problem

RDBMS

Native Graph



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not



Index

It is costly to index graph structures, use it wisely.



Index-based subgraph matching

Reference: Sun VLDB 2012 



Index-based subgraph matching

Reference: Sun VLDB 2012 



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID transactions or not



Two-sided communication

send recv

send recv

“telephone”



One-sided communication

send

send

“email”

message 
queue

msg
msg

msg
…

message
handlers



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID transactions or not



Design choice: scale-up vs. scale-out

• Supercomputer model
• Programming model simple and efficient 

• shared memory address space
• Expensive 
• Hardware is your ultimate limit

• Distributed cluster model
• Programming model is complex
• Relatively cheaper
• Flexible to meet a variety of needs



Scale “OUT”, not “UP”



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID transactions or not



Think twice before diving into transactions

• Pros
• Strong data consistency guarantee  

• Cons
• The hell of referential integrity 
• The disaster of cascading rollback
• Multi-round network communications per commit for distributed transactions



The hell of referential integrity 

… … … …Lady
Gaga

Lady Gaga in Freebase



The hell of referential integrity 

… … … …Lady
Gaga



The disaster of cascading rollback

… …

Locked by others

… …
Rollback

Anther transaction 
that requires any of 
these locks, abort.



Representative Graph Systems



Existing systems

• Mature data processing systems
• RDBMS
• MapReduce systems

• Systems specialized for certain graph operations
• PageRank, ……

• General-purpose graph processing systems
• Neo4j, Trinity, Horton, HyperGraphDB, TinkerGraph, InfiniteGraph, Cayley, 

Titan, PEGASUS, Pregel, Giraph, GraphLab, GraphChi, GraphX …



Representative graph processing systems
Property
graphs

Online
query

Data
sharding

In-memory
storage

Atomicity &
Transaction

Neo4j Yes Yes No No Yes

Trinity Yes Yes Yes Yes Atomicity

Horton Yes Yes Yes Yes No

HyperGraphDB No Yes No No Yes

FlockDB No Yes Yes No Yes

TinkerGraph Yes Yes No Yes No

InfiniteGraph Yes Yes Yes No Yes

Cayley Yes Yes SB SB Yes

Titan Yes Yes SB SB Yes

MapReduce No No Yes No No

PEGASUS No No Yes No No

Pregel No No Yes No No

Giraph No No Yes No No

GraphLab No No Yes No No

GraphChi No No No No No

GraphX No No Yes No No



Representative graph processing paradigms

• MapReduce for graph processing

• Vertex-centric graph computation

• Matrix arithmetic

• Graph embedding



MapReduce for Graph Processing



MapReduce

• High latency, yet high throughput general purpose data processing 
platform

• Optimized for offline analytics on large data partitioned over 
hundreds of machines



Processing graph using MapReduce
• No online query support

• The data model of MapReduce cannot represent graph natively
• Graph algorithms cannot be expressed intuitively

• Inefficiency for graph processing
• Intermediate results of each iteration need to be materialized 
• Entire graph structure need to be sent over network iteration after 

iteration, this incurs a large amount of unnecessary data movements



MapReduce

• De facto of distributed large data processing

• Great scalability: supports extremely large data, but unfortunately not 
for graphs



Vertex-centric graph computation



Basic idea: think like a vertex!



Computation model

• Graph computation is modeled as many supersteps

• Each vertex reads messages sent in the previous superstep

• Each vertex performs computations in parallel

• Each vertex can send messages to other vertices at the end of an 
iteration



Example: SSSP
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Example: SSSP
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Example: SSSP
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Example: SSSP
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Vertex-centric vs. MapReduce

• Exploits fine-grained parallelism at the node level

• Pregel doesn’t move graph partitions over network, only messages 
among nodes are passed at the end of each iteration

• Many graph algorithms cannot be expressed using vertex-centric 
computation model intuitively and elegantly 



Communication optimization



Bipartite view of a graph on a local machine



Message cache (“80/20” rule in real graphs)

Scale-free graph



Matrix arithmetic 



Representative system: Pegasus

• Open source large graph mining system
• Implemented on Hadoop

• Convert graph mining operations into iterative matrix-vector 
multiplications

• Pegasus uses an by matrix and a vector of size to represent 
graphs



Generalized Iterated Matrix-Vector Multiplication

• Three primitive graph mining operations
•
•
•





n

j
jji vmv

1
,', where 

• Graph mining problems are solved by customizing the three 
operations



Example: connected components

Source: Pegasus, Kevin Andryc, 2011
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Example: connected components

Adapted from: Pegasus, Kevin Andryc, 2011
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Graph embedding



Graph embedding

Reference: [zhao2011]

• Embed a graph into a geometric space so that distances in the space 
preserve the shortest distances in the graph

High dimensional 
Vector Space



Application: distance oracle

• Choose a small number of landmarks (~100)
• Heuristics: Degree , betweenness, …

• Calculate the distances from each landmark to all other vertices using 
BFS starting from each landmark

• Calculate the embedding of landmarks using the  downhill simplex 
method according to the distances between landmarks

• Calculate the embedding of other vertices using the downhill simplex 
method according to the distances from these vertices to landmarks

Reference: [Qi VLDB2014]



Distance oracle in a nutshell

• Step 1: Using sketch to give the lower and upper bound of the 
shortest distance between two vertices

l
u v

Triangle Inequality



Distance oracle in a nutshell

• Step 2: Refining results using graph embedding

=

is the coordinate distance in the embedding space



Real-time Query Processing



Query processing

• Where do latencies come from?

• Index-free query processing 



People search challenge in Facebook graph

• Among adult Facebook users, the average number of friends is 338.

=38,729,054 



Latency, Bandwidth, and Capacity

Source: The datacenter as a computer (book)

ݏ݊ 100

ݏ݉ 10



Disk-based approach

each disk seek + read: > 10 ms  

=38,729,054 387,290,540 ms 
= 4.5 days 



RAM-based approach

• DRAM latency: 100 ns

10 million reads/writes per second 

1 million vertex-level read/write per second

38,729,054 vertices to access, it takes at least 38 seconds. 



Where do latencies come from?

Storage

Communications

Algorithms

DRAM, Flash, or Disk

Multi-cores, Multi-nodes

Single-threaded, multi-threaded, synchronous, asynchronous



Move computation, instead of data!

Source: The datacenter as a computer (book)



If you care about latency, do not use the shared-
memory model in a distributed setting.



Lessons learned so far (how to reduce latencies)

• RAM (hardware sometimes does matter a lot)
• The stupid buy faster computers, smart ones write better programs?

• Avoid moving data

• ……



Lessons learned so far (how to reduce latencies)

• RAM (hardware sometimes does matter a lot)
• The stupid buy faster computers, smart ones write better programs?

• Avoid moving data

• Avoid unnecessary synchronizations 

Make programming harder



Fan-out Search
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Lessons learned so far

• RAM (Hardware sometimes does matter a lot)
• The stupid buy faster computers, smart ones write better programs?

• Avoid moving data

• Avoid unnecessary synchronizations 

Makes programming harder



Asynchronous fan-out search

Hop Msg # Node # per machine

1 ݊
݀
݊

2 ݊2 ݀ଶ

݊

3 ݊3 ݀ଷ

݊

݊ is the server count
݀ is the average degree



Cost of Graph Exploration

Graph Node Degree

Exploration Cost

Network Communication Cost

Computation Cost

Total Cost



The scalability of fan-out search

Node # 
ܰ

Edge #
ܧ

Node
Degree

Network
Message #

CPU Workload 
Per Machine

Total Cost

2.4 ൈ 10ଽ 2.4 ൈ 10ଵସ 10ହ ,16=ܯ) 4,368 ݄=3) 10ଵସ 2 days

݄: ݐ݊ݑ݋ܿ ݌݋݄ :ܯ ݐ݊ݑ݋ܥ ݄݁݊݅ܿܽܯ ݀: ݁݁ݎ݃݁ܦ ݁݀݋ܰ ݁݃ܽݎ݁ݒܣ

ࢗ ൌ ෍
࢏ࢊ

ࡹ

ࢎ

ୀ૙࢏

࢖ ൌ ෍ ࢑ࡹ

ࢎ

࢑ୀ૙
ࢌ ࢖ ൅ ሻࢗሺࢍ

Fortunately, most real-life graphs are power-law graphs

2.4 ൈ 10ଽ 17.4 ൈ 10ଽ 0~5000 ,16=ܯ) 4,368 ݄=3) 6.3ൈ 10଻ < 120 ms



Online query processing

• Where do latencies come from?

• Index-free query processing 



Query processing via graph exploration

Knowledge Serving Services/APIs

Distributed
In-memory Graph

film
director

actor

External Storage



Online query example: subgraph matching

Procedure:

1. Break a graph into basic units (edges, paths, frequent subgraphs, …)

2. Build index for every possible basic unit

3. Decompose a query into multiple basic unit queries, and join the 
results



Case study: distributed subgraph matching 

Procedure:

1. Break a query into basic units

2. Match the basic units in parallel on the fly

3. Join the results



Subgraph matching
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Subgraph matching
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Basic unit for distributed subgraph matching
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a

b
c

d
e

f

Basic unit for distributed subgraph matching

a

b

de

f

As a basic unit, which one is the best?

• Easy to decompose
• Height is always one

• It at most needs to cross the 
network once



a

b
c

d
e

f

a

b c

q
d

b c

q

b

e

q

f

f

d e

q

1 2

3
4

Query decomposition



a

b
c

d
e

f

a

b c

q
d

b c

q

b

e

q

f

f

d e

q

1 2

3
4

b

a d

q

c

a d

q f

d e

q

1

2
3

e f

'

' '

Query decomposition



Query optimization problems

• How to choose a good query decomposition

• How to choose a good execution order

• How to choose a good join order



Demo



video

Demo Video



How can we make it fast enough

• Big data
• hmm, we have a large variety of tools available 

• But, how do we handle “big schema” …
If we treat everything as texts and build indexes for these piles of words

• Inefficient data processing (weakly-typed system)
• Limited search functionality we can provide



Beat Big Schema with …



Beat Big Schema with …



Beat Big Schema with …

Big Code!



• Generated lines of code for Freebase: 
8,868,163

• Bytes of code: 446,747,058

Freebase Graph:



What is the huge amount of code for?

• Provides extremely fine-grained data access methods best matching the data



Symbolic Reasoning



Logic-centric 
knowledge

 serving via 
reasoning

Relation-centric 
knowledge

 serving via 
graph

Facts-centric 
knowledge

 serving via 
indexes

Graph serving

Entity serving

The evolution of knowledge representation

Symbolic Reasoning



Why is a big knowledge graph not enough?

• Large knowledge graphs have billions of facts

• However, it doesn’t provide much help in logic reasoning

o The knowledge is not symbolized logic knowledge

o Lack of reasoning rules allow machines to do reasoning automatically

o More importantly, lack of common sense



The pyramid of knowledge

concrete

abstract

Freebase, etc.
(Facts Base)

ConceptNet
(Common Sense Base)

Logic
Rule
Base



Pal

Satori

Common sense

dog

actor

bark
AnimalCapableOf, 0.8

IsA, 0.98

Lassie 

Jan Clayton

person
Logic
rule
base

logic rules



Use graph transformation to do logic deduction

Dog AnimalIsAPal IsA

Pal AnimalIsA

The logical deduction of a transitive relation 

Graph transformation: whenever we see a graph ௔ with a certain 
pattern , replace it with a graph ௕.



Instead of Minsky’s 13-page answer, …

“Why” question



Eviebot

WolframAlpha

XiaoIce

Why can Albert Einstein think?

Theory of relativity

Why can’t computers think?

Why …

XiaoWei

Why can Albert Einstein think?

Why can’t computers think?

German-born American

Trance is thinking

Why can Albert Einstein think?

Why can’t computers think?

Einstein is genius 

Because you are thinking DuMi



Our “shallow” yet reasonable answer 

• Why can Albert Einstein think, computer can’t
• [brain] is Capable Of [think]
• [person] have [brain]
• [Albert Einstein] is a [person]

• [think] requires [brain]
• [computer] does not have [brain]

computer

person

?x ?y ?z
PartOf PartOf

HasPrerequisite

think

CapableOf

Albert 
Einstein

IsA
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Thanks!
https://www.graphengine.io/
https://www.binshao.info/


