
Parallel Processing of Graphs

Bin Shao

Microsoft Research Asia (Beijing, China)

EDBT Summer School 2015

Appetizer

Entities related to Spain

A graph query example

Entities related to Spain

Mountains in Spain

A graph query example

Mountains in Spain

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Graph generation

• Case study

• Advance topics

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Graph generation

• Case study

• Advance topics

Graph processing scenarios
Online query processing + Offline analytics

A real-life relation search scenario

A News Headline

Tom Cruise Admits Katie Holmes Divorced Him To Protect Suri From Scientology

1 Tom Cruise – people.person.marriage – (marriage) – time.event.person – Katie Holmes

2 Tom Cruise – people.person.children – (Suri Cruise) – people.person.parent – Katie Holmes

3 Tom Cruise – film.actor.film – (Bambi Verleihung 2007) – film.filmactor – Katie Holmes

4 . . .

Relation search in knowledge graph

Multi-hop Relation Search

Discover the hidden relations between entities

Enable more than what entity indexes can support

Entity A Entity B

Search results of Google

Search results of Bing

Relation search in knowledge graph

Relation search in knowledge graph

Academic graph

Offline analytics example: PageRank

https://en.wikipedia.org/wiki/PageRank

An important algorithm behind Google, Bing, …

Query processing + offline analytics

Architecture of distance oracle [Qi et al. vldb 2014]

Graph

A pre-computed data structure that
enables us to estimate the shortest
distance between any pair of vertices
in a fast manner

Architecture of distance oracle [Qi et al. vldb 2014]

Graph

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Graph generation

• Case study

• Advance topics

Challenge I: diversity of graphs

Do we need to design algorithms for each type of graphs?Social Network

Web Graph

Protein Interaction Network

Schema Graph

Challenge II: diversity of computations

• Online query processing
• Shortest path query
• Subgraph matching query
• SPARQL query
• …

• Offline graph analytics
• PageRank
• Community detection
• …

• Other graph operations
• Graph generation, visualization, interactive exploration, etc.

Do we need to implement systems for each graph operation?

Challenge III: the scale of graphs

US Road Map

24
million

504
million

50
billion

1
billion

5
8

m
illio

n

3
1

b
illio

n
1

0
0

b
illio

n

1
trillio

n

Linked Data

Facebook

Web

of Nodes

of Edges
Makes most graph algorithms in textbooks ineffective!

Satori

2
billion

1
2

b
illio

n

270
million

Twitter

Existing systems

• Mature data processing systems
• RDBMS

• Map Reduce Systems

• Systems specialized for certain graph operations:
• PageRank, FlockDB

• General-purpose graph processing systems
• Neo4j, Trinity, Horton, HyperGraphDB, TinkerGraph, InfiniteGraph, Cayley,

Titan, PEGASUS, Pregel, Giraph, GraphLab, GraphChi, GraphX …

Representative graph processing systems

Property
graphs

Online
query

Data
sharding

In-memory
storage

Atomicity &
Transaction

Neo4j Yes Yes No No Yes

Trinity Yes Yes Yes Yes Atomicity

Horton Yes Yes Yes Yes No

HyperGraphDB No Yes No No Yes

FlockDB No Yes Yes No Yes

TinkerGraph Yes Yes No Yes No

InfiniteGraph Yes Yes Yes No Yes

Cayley Yes Yes SB SB Yes

Titan Yes Yes SB SB Yes

MapReduce No No Yes No No

PEGASUS No No Yes No No

Pregel No No Yes No No

Giraph No No Yes No No

GraphLab No No Yes No No

GraphChi No No No No No

GraphX No No Yes No No

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Graph generation

• Case study

• Advance topics

The needs ultimately determine the design

• The first important rule: there is no one-size-fits-all system

First rule: no one-size-fits-all system

Scale to complexity

Sc
al

e
to

 s
iz

e

Disk-based Key-value Store

Column Store

Document Store

Graph System

Typical RDBMS

SQL Comfort Zone

First rule: no one-size-fits-all system

Scale to complexity

Sc
al

e
to

 s
iz

e

Disk-based Key-value Store

Column Store

Document Store

Graph System

Typical RDBMS

SQL Comfort Zone

First rule: no one-size-fits-all system

Scale to complexity

Sc
al

e
to

 s
iz

e

Disk-based Key-value Store

Column Store

Document Store

Graph System

Typical RDBMS

SQL Comfort Zone

Characteristics of parallel graph processing

• Random access (Poor Locality)
• For a node, its adjacent nodes cannot be accessed without “jumping” no matter

how you represent a graph
• Not cache-friendly, data reuse is hard

• Data is hard to partition
• Difficult to extract parallelism by partitioning data
• Hard to get an efficient “Divide and Conquer” solution

• Data driven
• the structure of computations is not known a priori

• High data access to computation ratio

Reference: Challenges in parallel graph processing

Characteristics of parallel graph processing

• Random access (Poor Locality)
• For a node, its adjacent nodes cannot be accessed without “jumping” no matter

how you represent a graph
• Not cache-friendly, data reuse is hard

• Data is hard to partition
• Difficult to extract parallelism by partitioning data
• Hard to get an efficient “Divide and Conquer” solution

• Data driven
• the structure of computations is not known a priori

• High data access to computation ratio

Reference: Challenges in parallel graph processing

Design choices

• First important rule: there is no one-size-fits-all system

• Does this system support online queries, offline analytics, or both?

• Is the system optimized for response time, throughput, or both?

• Does the system scale, “out” or “up”?

• Does the system need transaction support?

Online queries vs. offline analytics

• Online query processing is usually optimized for response time

• Offline analytics is usually optimized for throughput

• Compared with offline analytics, online queries are usually harder to
optimize
• Online queries are sensitive to latency

• The data access patterns of a graph query are difficult to predict

Online queries vs. offline analytics

Online Query Processing

• Random access

• Data is hard to partition

• Data driven

• High data access to computation
ratio

Offline Analytics

• Data is hard to partition

• High data access to computation
ratio

High data access to computation ratio

System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not

System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not

Graph may be in the jail of storage

Graph in the
Jail of the storage

• We can use may existing data management
systems to process graph

• Many existing systems are mature, but not for
graph

• RDBMS, MapReduce

• The commonest graph operation “traversal”
incurs excessive amount of joins

Traverse graph using joins in RDBMS

ID name ….

1 N1 …

2 N2 …

3 N3 …

4 N4 …

5 N5 …

6 N6 …

… … …

src dst

1 3

2 4

2 1

4 3

1 5

1 6

… …

Node Table: N Edge Table: E

Get neighbors of N1

SELECT*

FROM N

LEFT JOIN E ON N.ID = E.dst

WHERE E.src = 1;

Multi-way Join vs. graph traversal

Company Incident Problem

… ID

Company

ID1 ID2

ID …

Incident

ID3 ID4

ID …

Problem

RDBMS

Native Graph

Total cost of ownership

Reproduced from Anderson’s SOSP 2009 paper

Trend in cost of RAM

Today In 5-10 years

servers 1000 1000

GB/server 64GB 1024GB

Total capacity 64TB 1PB

Total server cost $4M $4M

$/GB $60 $4

Adapted from: John Ousterhout, RAMCloud, 2010

System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not

Index

• It is costly to index graph structures, use it wisely.

• We will get back to this later …

System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not

Communication paradigm: two-sided vs. one-sided

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

Adapted from: Advanced parallel programming with MPI (Balaji et al)

Communication paradigm: two-sided vs. one-sided

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

50Advanced MPI, ISC (06/16/2013)

Adapted from: Advanced parallel programming with MPI (Balaji et al)

System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not

Design choice: scale-up vs. scale-out

• Supercomputer model
• Programming model simple and efficient

• shared memory address space

• Expensive and not common
• Hardware is your ultimate limit

• Distributed cluster model
• Programming model is complex

• Message passing and synchronization is more complex

• Relatively cheaper and can make use of commodity pc
• More flexible to meet various needs

Scale “OUT”, not “UP”

System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not

Think twice before diving into transactions

• Pros
• Strong data consistency guarantee

• Cons
• The hell of referential integrity

• The disaster of cascading rollback

• Multi-round network communications per commit for distributed transactions

The hell of referential integrity

… … … …

Primary Key – Foreign Key

Lady
Gaga

Lady Gaga in Freebase

The hell of referential integrity

… … … …

Foreign Key – Primary Key

Lady
Gaga

The disaster of cascading rollback

… …

Locked by others

… …
Rollback

Anther transaction
that requires any of
these locks, abort.

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Graph generation

• Case study

• Advance topics

MapReduce

MapReduce

• High latency, yet high throughput general purpose data processing
platform

• Optimized for offline analytics on large data partitioned on hundreds
of machines

Processing graph using MapReduce

• No online query support

• The data model of map reduce cannot describe graph
natively
• Graph algorithms cannot be expressed intuitively

• Inefficiency for graph processing
• Intermediate results of each iteration need to be materialized

• Entire graph structure need to be sent over network iteration
after iteration, this incurs huge unnecessary data movement

MapReduce

• De facto of distributed large data processing

• Great scalability: supports extremely large data, but unfortunately not
for graph

Vertex-centric graph computation

Basic idea: think like a vertex!

Computation model

• Graph computation is modeled as many supersteps

• Each vertex reads messages sent in previous superstep

• Each vertex performs computation in parallel

• Each vertex can send messages to other vertices in the end of an
iteration

Example: SSSP in Pregel

0

8
2

3

1

1

10

A B

C D

source

Example: SSSP in Pregel

8

2

0

8
2

3

1

1

10

A B

C D

source

 -> <-

Example: SSSP in Pregel

5

9

2

12

0

8
2

3

1

1

10

A B

C D

source

Example: SSSP in Pregel

5

6

2

10

0

8
2

3

1

1

10

A B

C D

source

Example: SSSP in Pregel

5

6

2

7

0

8
2

3

1

1

10

A B

C D

source

Pregel vs. MapReduce

• Exploits fine-grained parallelism at node level

• Pregel doesn’t move graph partitions over network, only messages
among nodes are passed at the end of each iteration

• Many graph algorithms cannot be expressed using vertex-centric
computation model intuitively and elegantly

Communication optimization

Bipartite view of a graph on a local machine

Message cache (“80/20” rule in real graphs)

Scale-free graph

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Case study

• Graph generation

• Other graph representations and their applications

Online query processing

• Where latencies come from and asynchronous fan-out search

• Index-free query processing

Online query processing

• Where latencies come from and asynchronous fan-out search

• Index-free query processing

People search challenge in Facebook graph

• Among adult Facebook users, the average number of friends is 338.

=38,729,054

Latency, Bandwidth, and Capacity

Source: The datacenter as a computer (book)

100 𝑛𝑠

10 𝑚𝑠

Disk-based approach

each disk seek + read: > 10 ms

=38,729,054 387,290,540 ms

= 4.5 days

RAM-based approach

• DRAM latency: 100 ns

10 million reads/writes per second

1 million node-level read/write per second

38,729,054 nodes to access, it takes at least 38 seconds.

Hmm, no parallel data accesses yet!

Where do latencies come from?

Storage

Communications

Algorithms

DRAM, Flash, or Disk

Multi-cores, Multi-nodes

Single-threaded, multi-threaded, synchronous, asynchronous

Move computation, instead of data!

Source: The datacenter as a computer (book)

If you care about latency, do not use the shared-
memory model in a distributed setting.

Lessons learned so far (how to reduce latencies)

• RAM (Hardware sometimes does matter a lot)
• The stupid buy faster computers, smart ones write better programs?

• Avoid moving data

• ……

Lessons learned so far (how to reduce latencies)

• RAM (Hardware sometimes does matter a lot)
• The stupid buy faster computers, smart ones write better programs?

• Avoid moving data

• Avoid unnecessary synchronizations

Makes programming harder

Asynchronous fan-out search

Hop Msg # Node # per machine

1 𝑛
𝑑

𝑛

2 𝑛2
𝑑2

𝑛

3 𝑛3
𝑑3

𝑛

𝑛 is the server count
𝑑 is the average degree

Online query processing

• Where latencies come from and fan-out search

• Index-free query processing

Online query example: subgraph matching

Procedure:

1. Break a graph into basic units (edges, paths, frequent subgraphs, …)

2. Build index for every possible basic unit

3. Decompose a query into multiple basic unit queries, and join the
results.

Query Index Examples

Index-based subgraph matching [Sun VLDB 2012]

Query Index Examples

Index-based subgraph matching [Sun VLDB 2012]

Case study: distributed subgraph matching

Procedure:

1. Break a query into basic units

2. Match the basic units in parallel on the fly

3. Join the results

Subgraph matching

a

d

b c

a

b

1 2

1

1
1 2

d a

cb
G1 G2

Subgraph matching

a

d

b c

a

b

1 2

1

1
1 2

d a

cb
G1 G2

a

b
c

d
e

f

Basic unit for distributed subgraph matching

a

b

c

d
e

f

b

d

b

d

f

a

b

d

As a basic unit, which one is the best?

a

b
c

d
e

f

Basic unit for distributed subgraph matching

a

b

c

d
e

f

b

d

b

d

f

a

b

d

As a basic unit, which one is the best?

a

b
c

d
e

f

Basic unit for distributed subgraph matching

a

b

d
e

f

As a basic unit, which one is the best?

• Easy to decompose

• Height is always one
• It at most needs to cross the

network once

a

b
c

d
e

f

a

b c

q
d

b c

q

b

e

q

f

f

d e

q

1 2

3
4

Query decomposition

a

b
c

d
e

f

a

b c

q
d

b c

q

b

e

q

f

f

d e

q

1 2

3
4

b

a d

q

c

a d

q f

d e

q

1

2
3

e f

'

' '

Query decomposition

Query optimization problems

• How to choose a good query decomposition

• How to choose a good execution order

• How to choose a good join order

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Case study

• Graph generation

• Other graph representations and their applications

How to Serve the Knowledge?

Table + column indexes

Free text search

Native graph exploration

Triplets/RDF

Column Index

Representative Knowledge Serving Systems

System Query Language Known Scalability Distributed

sw-Store SPARQL 55M V

RDFJoin SPARQL 44M

RDFKB - 44M

BitMat SPARQL-like 47M

RDF-3x SPARQL 51M V

Virtuoso SPARQL 1,068M V

Trinity LIKQ, TQL, SPARQL 24.6B V

Reference: A survey of RDF storage approaches (David C. FAYE, et al.)

Problem and Our Goal

Problem

KG is a massive entity network

The most valuable part is its rich relationships, but

Currently mainly used via entity indexes

Cannot answer queries requiring accesses of 2+ hop relations

Goal

This project is to provide advanced real-time knowledge graph serving operators

Serve the full-scale KG

Make KG accessible in real time

Provide advanced graph operators

Challenges of Serving KG

• Complex data schema
• Rich relations

Data size

Raw RDF data 5T+

Triple Facts 25B+

Challenges of Serving KG

• Complex data schema
• Rich relations

• Multi-typed entities

123 mso/type.object.name “Pal”

123 mso/type.object.type
mso/organism.dog
123 mso/organism.dog.breeds “Collie Rough”

123 mso/type.object.type mso/film.actor
123 mso/film.actor.film 789
789 mso/type.object.type mso/film.film
789 mso/type.object.name “Lassie Come
Home”

“Pal”

Data size

Raw RDF data 5T+

Triple Facts 25B+

A Strongly Typed System for RDF

Models Multi-Typed Entities in a Strongly Typed Manner

Root

DogActor

143422

 Pal

ID

Name

Dog, ActorTypes

"Collie Rough"Breeds

Root

Film

436234

 Lassie Come Home

ID

Name

FilmTypes

436234Perform

Get the DOB of entity 12345

Strongly-typed data accesses

Get the films of actors co-starring with entity 12345

Strongly-typed data accesses

Storage Architecture

film

directoractor

name namename
… …

Entity
Relations

+
In-memory

Key Properties

On-disk
Entity

Properties

Query KG via Graph Exploration

Knowledge Serving Services/APIs

Distributed
In-memory Graph

film
director

actor

External Storage

Knowledge Serving for Text Processing

APIs for Knowledge Access

List<string[]> GetEntityIdByName (string entityName)

List<string> GetPredicatesByEntityId (string entityId)

List<string[]> GetValuesByEntityPredicate (string entityId, string predicate)

……

Text
Processing

Tasks

Knowledge
Serving

APIs

Semantic
Parsing

Entity
Linking

Predicate
Linking

Structure
Predication

Text
Processing

Tasks

Graph
Query

Language

Knowledge
Graph

Entity Disambiguation/Type Resolving

Who are the advisees of Michael Jordan?
Michael Jordan (footballer) (born 1986)
Michael-Hakim Jordan (basketball player) (born 1977)
Michael Jordan (Irish politician)
Michael I. Jordan (Professor) (born 1957)
....

Which Michael?

mso/education.academic.advisees8234993200123 "Andrew Ng"

mso/type.object.name8234993200123 “Michael Jordan"

mso/people.person.profession8234993200123 “Professor"

http://en.wikipedia.org/wiki/Michael_Jordan_(footballer)
http://en.wikipedia.org/wiki/Michael-Hakim_Jordan
http://en.wikipedia.org/wiki/Michael_Jordan_(Irish_politician)
http://en.wikipedia.org/wiki/Michael_I._Jordan

Discover Linking Entities

Given three entities “Kate Winslet”, “Billy Zane”, and “James Cameron”

Kate Winslet

James Cameron

Billy Zane

Titanic

mso/film.film_director

Actor

Film

Director

Actor

Resolved Entity Types

Discover Linking Relations

Given two entities “Vietnam Veterans Memorial” and “The Monument
to the People's Heroes”

Vietnam Veterans Memorial

The Monument to the People's Heroes

architect_by
Maya Lin Huiyin Lin

niece architect

Multi-hop Relation Search

Demo: http://graph007

http://graph007/

Keyword Search

Melinda Gates

Microsoft

Bill Gates

organization.organization.founderPeople.person.parent

Organization.founder

The road
ahead

book.author

book.written_work. author

Rory John
Gates

People.person.children

(Bill Gates, Melinda Gates, Microsoft, The road ahead)

Parent

Child

Relation Search Demo

Relation Search Demo

How can we make it fast enough

• Big data
• emm, we have a large variety of tools available

• But, how do we handle “big schema” …

Big Schema

How can we make it fast enough

• Big data
• emm, we have a large variety of tools available

• But, how do we handle “big schema” …
If we treat everything as texts and build indexes for these piles of words

• Inefficient data processing (weakly-typed system)
• Limited search functionality we can provide

Beat Big Schema with …

Beat Big Schema with …

Beat Big Schema with …

Big Code!

• Generated lines of code for Freebase:
8,868,163

• Bytes of code: 446,747,058

Freebase Graph:

What is the huge amount of code for?

• Provides extremely fine-grained data access methods best matching the data

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Case study

• Graph generation

• Other graph representations and their applications

What is a graph generator & why do we need one

• A graph generator generates can graphs with user-specified size and
properties

• We need to generate large graphs for experiments

• Large graph generation takes a long time

PGBL graph generator

http://www.boost.org/doc/libs/1_59_0/libs/graph_parallel/doc/html/rmat_generator.html

When the existing ones cannot meet our needs, we may want to write one.

What is a good graph generator

• It can generate a graph with certain properties

• It can generate a large graph fast

• It is as resource economical as possible

• It can generate graphs in native graph formats

Graph representation: adjacency list vs. matrix

• In most cases, adjacency list is preferable to the matrix representation

• Matrix does not support dynamic node insertion and deletion

• The space overhead is high when we are generating a sparse graph

A common graph generation pipeline

Bottlenecks of the pipeline

Avoid sorting by using an in-memory hash storage

Distributed graph generation

• Step 1: Preparing a distributed hash storage

In-memory Hash Storage

Distributed graph generation

• Step 2: Generating the graph in parallel

Distributed graph generation

• Step 2: Generating the graph in parallel

Distributed graph generation

• Step 2: Generating the graph in parallel

Distributed graph generation

• Step 2: Generating the graph in parallel

Distributed graph generation

• Step 3: Write the generated graph to disk

head id1 links … jmp

links … … … jmp

Links … -1

Chaining

Graph nodesPacking memory segments into

Hash Storage

head id links -1

head id links … -1

head id1 links … jmp head id links -1

links … … … jmp head id links …

… -1

Links… … -1

Chaining

In-memory key-value store

An example

0

5

10

15

20

1M 2M 4M 8M 16M 32M 64M 128M 256M 512M 1024M

Time (min)

http://www.graphengine.io/docs/manual/DemoApps/GraphGenerator.html

Outline

• Graph processing scenarios

• Challenges of large graph processing

• General design principles

• Offline analytics

• Online query processing

• Case study

• Graph generation

• Other graph representations and their applications

Matrix arithmetic

Representative System: Pegasus

• Open source large graph mining system
• Implemented on Hadoop

• Convert graph mining operations into iterative matrix-vector
multiplication

• Pegasus uses a 𝑛 by 𝑛 matrix 𝑀 and a vector 𝑣 of size 𝑛 to represent
graph data

Generalized Iterated Matrix-Vector Multiplication

• Three primitive graph mining operations
•

•

•

𝑀 × 𝑣 = 𝑣’

n

j

jji vmv
1

,', where

• Graph mining problems are solved by customizing the three
operations

Example: Connected Components

Source: Pegasus, Kevin Andryc, 2011

1

2

3

4

G1

5

6

G5

7

8

G7

1

1 1

1 1

1

1

1

1

1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1

1

2

3

5

5

7

7

1 1

1 1 1

1 1 1

1 1

1 1

1 1

1 1

1 1

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

xG =

1

1

1

2

5

5

7

7

1

1

1

1

5

5

7

7

Example: Connected Components

Adapted from: Pegasus, Kevin Andryc, 2011

1 2 3 4 5 6 7 8

Graph embedding

Graph Embedding

Reference: [zhao 2010, zhao2011]

• Embed a graph into a geometric space so that distances in the space
preserve the shortest distances in the graph

High dimensional
Vector Space

Application: Distance Oracle

• Choose a small number of landmarks (~100)
• Heuristics: Degree , betweenness, …

• Calculate the distance from each landmark to all other vertices using
BFS starting from each landmark

• Calculate the embedding of landmarks using the downhill simplex
method according to the distances between landmarks

• Calculate the embedding of other vertices using the downhill simplex
method according to the distances from these vertices to landmarks

Distance oracle in a nutshell

• Step 1: Using sketch to give the lower and upper bound of the
shortest distance between two vertices

l

u v

|𝒅 𝒖, 𝒍 − 𝒅 𝒍, 𝒗 | ≤ 𝒅 𝒖, 𝒗 ≤ 𝒅 𝒖, 𝒍 + 𝒅(𝒍, 𝒗)

Triangle Inequality

𝒍(𝒖, 𝒗) ≤ 𝒅 𝒖, 𝒗 ≤ 𝒓(𝒖, 𝒗)

Distance oracle in a nutshell

• Step 2: Refining results using graph embedding

=

is the coordinate distance in the embedding space

A Brief Introduction to
Trinity Graph Engine

Trinity Research Roadmap

Applications

Algorithms

Programming models

Online
Query

Processing

Offline
Graph

Analytics

Storage infrastructure

Trinity

Trinity Graph Engine:
[Sigmod 2012, 2013]

Subgraph matching, Trinity.RDF,
distance oracle, graph partitioning,
reachability …
[VLDB 2012, 2013, 2014], ICDE 2014

Real-time knowledge serving on
knowledge graph, academic search, etc

Trinity Memory Cloud

Generality

Large
Scale

Graph

Trinity

Design Philosophy
Not a one-size-fits-all graph system, but a graph engine

Flexible data and computation modeling capability

Trinity can morph into

a large variety of graph processing systems

Trinity = Graph Modeling Tools +
Distributed In-memory Data Store +
Declarative Programming Model

Design Rationale of Memory Cloud

Fast random
access

Parallel
computation

Low latency online query
processing

High throughput offline
analytics

Memory
cloud

Random
access

challenge

RAM capacity
limit of single

machine

System Stack

Trinity Specification Language

TSL

OMG

IDL

Graph Modeling

Google

ProtoBuf

Data interchange

Format Specification

ICE

Slice

Message Passing

Modeling

Why TSL?

• TSL allows users to define graph schemata, and communication
protocols through declarative interfaces.

• TSL makes Trinity memory cloud beyond a key-value store
• Users are allowed to freely define the data schema

• TSL makes message passing programming ever so easy

176

Modeling a Movie and Actor Graph

TSL-enabled Cell Accessor:
Efficient and User-friendly

Modeling Message Passing

Trinity-enabled Graph
Computation Paradigms
• Vertex-centric graph analytics

• Prosperous since Pregel, e.g. Giraph, GraphChi

• Approximate graph computation based on local sampling
• Enabled by randomly partitioned in-memory graph
• Fast approximate computation with minimum communication costs
• Application: distance oracle [VLDB 2014]

• Index-free real-time online query processing
• Enabled by fast in-memory distributed graph exploration
• Examples, subgraph match (vldb 2012) and Trinity.RDF (vldb 2013)

http://www.graphengine.io/

Thanks!
http://www.graphengine.io/

