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Mountains in Spain

A graph query example



Mountains in Spain
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Graph processing scenarios
Online query processing + Offline analytics



A real-life relation search scenario

A News Headline

Tom Cruise Admits Katie Holmes Divorced Him To Protect Suri From Scientology 

1 Tom Cruise – people.person.marriage – (marriage ) – time.event.person – Katie Holmes

2 Tom Cruise – people.person.children – (Suri Cruise) – people.person.parent – Katie Holmes

3 Tom Cruise – film.actor.film – (Bambi Verleihung 2007) – film.filmactor – Katie Holmes

4 . . .



Relation search in knowledge graph

Multi-hop Relation Search

Discover the hidden relations between entities

Enable more than what entity indexes can support

Entity A              Entity B 



Search results of Google



Search results of Bing



Relation search in knowledge graph



Relation search in knowledge graph



Academic graph



Offline analytics example: PageRank

https://en.wikipedia.org/wiki/PageRank

An important algorithm behind Google, Bing, …



Query processing + offline analytics



Architecture of distance oracle [Qi et al. vldb 2014]

Graph

A pre-computed data structure that 
enables us to estimate the shortest 
distance between any pair of vertices 
in a fast manner



Architecture of distance oracle [Qi et al. vldb 2014]

Graph
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Challenge I: diversity of graphs

Do we need to design algorithms for each type of graphs?Social Network

Web Graph

Protein Interaction Network

Schema Graph



Challenge II: diversity of computations

• Online query processing 
• Shortest path query
• Subgraph matching query
• SPARQL query
• …

• Offline graph analytics 
• PageRank
• Community detection
• …

• Other graph operations
• Graph generation, visualization, interactive exploration, etc.

Do we need to implement systems for each graph operation?



Challenge III: the scale of graphs
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Existing systems

• Mature data processing systems
• RDBMS

• Map Reduce Systems

• Systems specialized for certain graph operations:
• PageRank, FlockDB

• General-purpose graph processing systems
• Neo4j, Trinity, Horton, HyperGraphDB, TinkerGraph, InfiniteGraph, Cayley, 

Titan, PEGASUS, Pregel, Giraph, GraphLab, GraphChi, GraphX …



Representative graph processing systems

Property
graphs

Online
query

Data
sharding

In-memory
storage

Atomicity &
Transaction

Neo4j Yes Yes No No Yes

Trinity Yes Yes Yes Yes Atomicity

Horton Yes Yes Yes Yes No

HyperGraphDB No Yes No No Yes

FlockDB No Yes Yes No Yes

TinkerGraph Yes Yes No Yes No

InfiniteGraph Yes Yes Yes No Yes

Cayley Yes Yes SB SB Yes

Titan Yes Yes SB SB Yes

MapReduce No No Yes No No

PEGASUS No No Yes No No

Pregel No No Yes No No

Giraph No No Yes No No

GraphLab No No Yes No No

GraphChi No No No No No

GraphX No No Yes No No
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The needs ultimately determine the design

• The first important rule: there is no one-size-fits-all system



First rule: no one-size-fits-all system
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Characteristics of parallel graph processing

• Random access (Poor Locality)
• For a node, its adjacent nodes cannot be accessed without “jumping” no matter 

how you represent a graph
• Not cache-friendly, data reuse is hard

• Data is hard to partition
• Difficult to extract parallelism by partitioning data
• Hard to get an efficient “Divide and Conquer” solution

• Data driven
• the structure of computations is not known a priori

• High data access to computation ratio 

Reference: Challenges in parallel graph processing



Characteristics of parallel graph processing

• Random access (Poor Locality)
• For a node, its adjacent nodes cannot be accessed without “jumping” no matter 

how you represent a graph
• Not cache-friendly, data reuse is hard

• Data is hard to partition
• Difficult to extract parallelism by partitioning data
• Hard to get an efficient “Divide and Conquer” solution

• Data driven
• the structure of computations is not known a priori

• High data access to computation ratio 

Reference: Challenges in parallel graph processing



Design choices

• First important rule: there is no one-size-fits-all system

• Does this system support online queries, offline analytics, or both?

• Is the system optimized for response time, throughput, or both?

• Does the system scale, “out” or “up”?

• Does the system need transaction support?



Online queries vs. offline analytics 

• Online query processing is usually optimized for response time

• Offline analytics is usually optimized for throughput

• Compared with offline analytics, online queries are usually harder to 
optimize
• Online queries are sensitive to latency

• The data access patterns of a graph query are difficult to predict



Online queries vs. offline analytics 

Online Query Processing

• Random access

• Data is hard to partition

• Data driven

• High data access to computation 
ratio

Offline Analytics

• Data is hard to partition

• High data access to computation 
ratio



High data access to computation ratio



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not
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Graph may be in the jail of storage

Graph in the 
Jail of the storage

• We can use may existing data management 
systems to process graph

• Many existing systems are mature, but not for 
graph

• RDBMS, MapReduce

• The commonest graph operation “traversal” 
incurs excessive amount of joins



Traverse graph using joins in RDBMS

ID name ….

1 N1 …

2 N2 …

3 N3 …

4 N4 …

5 N5 …

6 N6 …

… … …

src dst

1 3

2 4

2 1

4 3

1 5

1 6

… …

Node Table: N Edge Table: E

Get neighbors of N1

SELECT* 

FROM N

LEFT JOIN E ON N.ID = E.dst

WHERE E.src = 1;



Multi-way Join vs. graph traversal

Company Incident Problem

… ID

Company

ID1 ID2

ID …

Incident

ID3 ID4

ID …

Problem

RDBMS

Native Graph



Total cost of ownership

Reproduced from Anderson’s SOSP 2009 paper



Trend in cost of RAM

Today In 5-10 years

# servers 1000 1000

GB/server 64GB 1024GB

Total capacity 64TB 1PB

Total server cost $4M $4M

$/GB $60 $4

Adapted from: John Ousterhout,  RAMCloud, 2010



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided

• Scale out or scale up

• ACID Transactions or not



Index

• It is costly to index graph structures, use it wisely.

• We will get back to this later …



System design choice

• Main storage (storage backend)

• Index

• Communication paradigm: two-sided vs. one-sided
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Communication paradigm: two-sided vs. one-sided

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

Memory
Segment

Adapted from: Advanced parallel programming with MPI (Balaji et al)



Communication paradigm: two-sided vs. one-sided

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory
Segment

Processor Processor

Send Recv

Memory
Segment

Memory
Segment

Memory
Segment

50Advanced MPI, ISC (06/16/2013)

Adapted from: Advanced parallel programming with MPI (Balaji et al)
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Design choice: scale-up vs. scale-out

• Supercomputer model
• Programming model simple and efficient 

• shared memory address space

• Expensive and not common
• Hardware is your ultimate limit

• Distributed cluster model
• Programming model is complex

• Message passing and synchronization is more complex

• Relatively cheaper and can make use of commodity pc
• More flexible to meet various needs



Scale “OUT”, not “UP”



System design choice

• Main storage (storage backend)

• Index
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Think twice before diving into transactions

• Pros
• Strong data consistency guarantee  

• Cons
• The hell of referential integrity 

• The disaster of cascading rollback

• Multi-round network communications per commit for distributed transactions



The hell of referential integrity 

… … … …

Primary Key – Foreign Key

Lady
Gaga

Lady Gaga in Freebase



The hell of referential integrity 

… … … …

Foreign Key – Primary Key

Lady
Gaga



The disaster of cascading rollback

… …

Locked by others

… …
Rollback

Anther transaction 
that requires any of 
these locks, abort.
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MapReduce



MapReduce

• High latency, yet high throughput general purpose data processing 
platform

• Optimized for offline analytics on large data partitioned on hundreds 
of machines



Processing graph using MapReduce

• No online query support

• The data model of map reduce cannot describe graph 
natively
• Graph algorithms cannot be expressed intuitively

• Inefficiency for graph processing
• Intermediate results of each iteration need to be materialized 

• Entire graph structure need to be sent over network iteration 
after iteration, this incurs huge unnecessary data movement



MapReduce

• De facto of distributed large data processing

• Great scalability: supports extremely large data, but unfortunately not 
for graph



Vertex-centric graph computation



Basic idea: think like a vertex!



Computation model

• Graph computation is modeled as many supersteps

• Each vertex reads messages sent in previous superstep

• Each vertex performs computation in parallel

• Each vertex can send messages to other vertices in the end of an 
iteration



Example: SSSP in Pregel
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Example: SSSP in Pregel
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Pregel vs. MapReduce

• Exploits fine-grained parallelism at node level

• Pregel doesn’t move graph partitions over network, only messages 
among nodes are passed at the end of each iteration

• Many graph algorithms cannot be expressed using vertex-centric 
computation model intuitively and elegantly 



Communication optimization



Bipartite view of a graph on a local machine



Message cache (“80/20” rule in real graphs)

Scale-free graph
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Online query processing

• Where latencies come from and asynchronous fan-out search 

• Index-free query processing 
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People search challenge in Facebook graph

• Among adult Facebook users, the average number of friends is 338.

=38,729,054 



Latency, Bandwidth, and Capacity

Source: The datacenter as a computer (book)

100 𝑛𝑠

10 𝑚𝑠



Disk-based approach

each disk seek + read: > 10 ms

=38,729,054 387,290,540 ms

= 4.5 days 



RAM-based approach

• DRAM latency: 100 ns

10 million reads/writes per second 

1 million node-level read/write per second

38,729,054 nodes to access, it takes at least 38 seconds. 



Hmm, no parallel data accesses yet!



Where do latencies come from?

Storage

Communications

Algorithms

DRAM, Flash, or Disk

Multi-cores, Multi-nodes

Single-threaded, multi-threaded, synchronous, asynchronous



Move computation, instead of data!

Source: The datacenter as a computer (book)



If you care about latency, do not use the shared-
memory model in a distributed setting.



Lessons learned so far (how to reduce latencies)

• RAM (Hardware sometimes does matter a lot)
• The stupid buy faster computers, smart ones write better programs?

• Avoid moving data

• ……



Lessons learned so far (how to reduce latencies)

• RAM (Hardware sometimes does matter a lot)
• The stupid buy faster computers, smart ones write better programs?

• Avoid moving data

• Avoid unnecessary synchronizations 

Makes programming harder



Asynchronous fan-out search

Hop Msg # Node # per machine

1 𝑛
𝑑

𝑛

2 𝑛2
𝑑2

𝑛

3 𝑛3
𝑑3

𝑛

𝑛 is the server count
𝑑 is the average degree





Online query processing

• Where latencies come from and fan-out search 

• Index-free query processing 



Online query example: subgraph matching

Procedure:

1. Break a graph into basic units (edges, paths, frequent subgraphs, …)

2. Build index for every possible basic unit

3. Decompose a query into multiple basic unit queries, and join the 
results.



Query Index Examples

Index-based subgraph matching [Sun VLDB 2012] 



Query Index Examples

Index-based subgraph matching [Sun VLDB 2012] 



Case study: distributed subgraph matching 

Procedure:

1. Break a query into basic units

2. Match the basic units in parallel on the fly

3. Join the results



Subgraph matching
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a

b
c

d
e

f

Basic unit for distributed subgraph matching

a

b

d
e

f

As a basic unit, which one is the best?

• Easy to decompose

• Height is always one
• It at most needs to cross the 

network once
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Query optimization problems

• How to choose a good query decomposition

• How to choose a good execution order

• How to choose a good join order
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How to Serve the Knowledge?

Table + column indexes

Free text search

Native graph exploration

Triplets/RDF

Column Index



Representative Knowledge Serving Systems

System Query Language Known Scalability Distributed

sw-Store SPARQL 55M V

RDFJoin SPARQL 44M

RDFKB - 44M

BitMat SPARQL-like 47M

RDF-3x SPARQL 51M V

Virtuoso SPARQL 1,068M V

Trinity LIKQ, TQL, SPARQL 24.6B V

Reference: A survey of RDF storage approaches (David C. FAYE, et al.)



Problem and Our Goal

Problem

KG is a massive entity network

The most valuable part is its rich relationships, but

Currently mainly used via entity indexes

Cannot answer queries requiring accesses of 2+ hop relations

Goal

This project is to provide advanced real-time knowledge graph serving operators

Serve the full-scale KG

Make KG accessible in real time

Provide advanced graph operators



Challenges of Serving KG

• Complex data schema
• Rich relations

Data size

Raw RDF data 5T+

Triple Facts 25B+



Challenges of Serving KG

• Complex data schema
• Rich relations

• Multi-typed entities

123 mso/type.object.name “Pal”

123 mso/type.object.type  
mso/organism.dog
123 mso/organism.dog.breeds “Collie Rough”

123 mso/type.object.type mso/film.actor
123 mso/film.actor.film 789
789 mso/type.object.type mso/film.film
789 mso/type.object.name “Lassie Come 
Home”

“Pal”

Data size

Raw RDF data 5T+

Triple Facts 25B+



A Strongly Typed System for RDF

Models Multi-Typed Entities in a Strongly Typed Manner

Root

DogActor

143422

 Pal 

ID

Name

Dog, ActorTypes

"Collie Rough"Breeds

Root

Film

436234

 Lassie Come Home 

ID

Name

FilmTypes

436234Perform



Get the DOB of entity 12345

Strongly-typed data accesses



Get the films of actors co-starring with entity 12345

Strongly-typed data accesses



Storage Architecture

film

directoractor

name namename
… …

Entity
Relations

+
In-memory

Key Properties

On-disk
Entity

Properties



Query KG via Graph Exploration

Knowledge Serving Services/APIs

Distributed
In-memory Graph

film
director

actor

External Storage









Knowledge Serving for Text Processing

APIs for Knowledge Access

List<string[]> GetEntityIdByName (string entityName)

List<string> GetPredicatesByEntityId (string entityId)

List<string[]> GetValuesByEntityPredicate (string entityId, string predicate)

……

Text 
Processing 

Tasks

Knowledge
Serving 

APIs

Semantic 
Parsing

Entity 
Linking

Predicate 
Linking

Structure 
Predication

Text 
Processing 

Tasks

Graph 
Query 

Language

Knowledge 
Graph



Entity Disambiguation/Type Resolving

Who are the advisees of Michael Jordan?
Michael Jordan (footballer) (born 1986)
Michael-Hakim Jordan (basketball player) (born 1977)
Michael Jordan (Irish politician)
Michael I. Jordan (Professor) (born 1957)
....

Which Michael?

mso/education.academic.advisees8234993200123 "Andrew Ng"

mso/type.object.name8234993200123 “Michael Jordan"

mso/people.person.profession8234993200123 “Professor"

http://en.wikipedia.org/wiki/Michael_Jordan_(footballer)
http://en.wikipedia.org/wiki/Michael-Hakim_Jordan
http://en.wikipedia.org/wiki/Michael_Jordan_(Irish_politician)
http://en.wikipedia.org/wiki/Michael_I._Jordan


Discover Linking Entities

Given three entities “Kate Winslet”, “Billy Zane”, and “James Cameron”

Kate Winslet

James Cameron

Billy Zane

Titanic

mso/film.film_director

Actor

Film

Director

Actor

Resolved Entity Types



Discover Linking Relations

Given two entities “Vietnam Veterans Memorial” and “The Monument 
to the People's Heroes” 

Vietnam Veterans Memorial

The Monument to the People's Heroes

architect_by
Maya Lin Huiyin Lin

niece architect





Multi-hop Relation Search

Demo: http://graph007

http://graph007/


Keyword Search

Melinda Gates

Microsoft

Bill Gates

organization.organization.founderPeople.person.parent

Organization.founder

The road 
ahead

book.author

book.written_work. author

Rory John 
Gates

People.person.children

(Bill Gates, Melinda Gates, Microsoft, The road ahead)

Parent

Child



Relation Search Demo



Relation Search Demo



How can we make it fast enough

• Big data
• emm, we have a large variety of tools available 

• But, how do we handle “big schema” …



Big Schema



How can we make it fast enough

• Big data
• emm, we have a large variety of tools available 

• But, how do we handle “big schema” …
If we treat everything as texts and build indexes for these piles of words

• Inefficient data processing (weakly-typed system)
• Limited search functionality we can provide



Beat Big Schema with …



Beat Big Schema with …



Beat Big Schema with …

Big Code!



• Generated lines of code for Freebase: 
8,868,163

• Bytes of code: 446,747,058

Freebase Graph:



What is the huge amount of code for?

• Provides extremely fine-grained data access methods best matching the data
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What is a graph generator & why do we need one

• A graph generator generates can graphs with user-specified size and 
properties

• We need to generate large graphs for experiments

• Large graph generation takes a long time



PGBL graph generator

http://www.boost.org/doc/libs/1_59_0/libs/graph_parallel/doc/html/rmat_generator.html

When the existing ones cannot meet our needs, we may want to write one.



What is a good graph generator

• It can generate a graph with certain properties

• It can generate a large graph fast

• It is as resource economical as possible

• It can generate graphs in native graph formats



Graph representation: adjacency list vs. matrix

• In most cases, adjacency list is preferable to the matrix representation

• Matrix does not support dynamic node insertion and deletion

• The space overhead is high when we are generating a sparse graph 



A common graph generation pipeline



Bottlenecks of the pipeline



Avoid sorting by using an in-memory hash storage



Distributed graph generation

• Step 1: Preparing a distributed hash storage

In-memory Hash Storage



Distributed graph generation

• Step 2: Generating the graph in parallel



Distributed graph generation

• Step 2: Generating the graph in parallel



Distributed graph generation

• Step 2: Generating the graph in parallel



Distributed graph generation

• Step 2: Generating the graph in parallel



Distributed graph generation

• Step 3: Write the generated graph to disk

head id1 links … jmp

links … … … jmp

Links … -1

Chaining

Graph nodesPacking memory segments into 



Hash Storage

head id links -1

head id links … -1

head id1 links … jmp head id links -1

links … … … jmp head id links …

… -1

Links… … -1

Chaining

In-memory key-value store



An example

0
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1M 2M 4M 8M 16M 32M 64M 128M 256M 512M 1024M

Time (min)

http://www.graphengine.io/docs/manual/DemoApps/GraphGenerator.html
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Matrix arithmetic 



Representative System: Pegasus

• Open source large graph mining system
• Implemented on Hadoop

• Convert graph mining operations into iterative matrix-vector 
multiplication

• Pegasus uses a 𝑛 by 𝑛 matrix 𝑀 and a vector 𝑣 of size 𝑛 to represent 
graph data



Generalized Iterated Matrix-Vector Multiplication

• Three primitive graph mining operations
•

•

•

𝑀 × 𝑣 = 𝑣’ 



n

j

jji vmv
1

,', where 

• Graph mining problems are solved by customizing the three 
operations



Example: Connected Components

Source: Pegasus, Kevin Andryc, 2011
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Graph embedding



Graph Embedding

Reference: [zhao 2010, zhao2011]

• Embed a graph into a geometric space so that distances in the space 
preserve the shortest distances in the graph

High dimensional 
Vector Space



Application: Distance Oracle

• Choose a small number of landmarks (~100)
• Heuristics: Degree , betweenness, …

• Calculate the distance from each landmark to all other vertices using 
BFS starting from each landmark

• Calculate the embedding of landmarks using the  downhill simplex 
method according to the distances between landmarks

• Calculate the embedding of other vertices using the downhill simplex 
method according to the distances from these vertices to landmarks



Distance oracle in a nutshell

• Step 1: Using sketch to give the lower and upper bound of the 
shortest distance between two vertices

l

u v

|𝒅 𝒖, 𝒍 − 𝒅 𝒍, 𝒗 | ≤ 𝒅 𝒖, 𝒗 ≤ 𝒅 𝒖, 𝒍 + 𝒅(𝒍, 𝒗)

Triangle Inequality

𝒍(𝒖, 𝒗) ≤ 𝒅 𝒖, 𝒗 ≤ 𝒓(𝒖, 𝒗)



Distance oracle in a nutshell

• Step 2: Refining results using graph embedding

=

is the coordinate distance in the embedding space



A Brief Introduction to 
Trinity Graph Engine



Trinity Research Roadmap

Applications

Algorithms

Programming models

Online 
Query 

Processing 

Offline 
Graph 

Analytics

Storage infrastructure 

Trinity

Trinity Graph Engine:
[Sigmod 2012, 2013]

Subgraph matching, Trinity.RDF,
distance oracle, graph partitioning,
reachability …
[VLDB 2012, 2013, 2014], ICDE 2014

Real-time knowledge serving on 
knowledge graph, academic search, etc

Trinity Memory Cloud

Generality

Large
Scale

Graph

Trinity



Design Philosophy
Not a one-size-fits-all graph system, but a graph engine

Flexible data and computation modeling capability

Trinity can morph into 

a large variety of graph processing systems 

Trinity  =  Graph Modeling Tools +
Distributed In-memory Data Store  + 
Declarative Programming Model



Design Rationale of Memory Cloud

Fast random 
access 

Parallel 
computation

Low latency online query
processing

High throughput offline 
analytics

Memory 
cloud

Random 
access 

challenge

RAM capacity 
limit of single 

machine



System Stack



Trinity Specification Language

TSL

OMG

IDL

Graph Modeling

Google

ProtoBuf

Data interchange 

Format Specification

ICE

Slice

Message Passing

Modeling



Why TSL?

• TSL allows users to define graph schemata, and communication 
protocols through declarative interfaces.

• TSL makes Trinity memory cloud beyond a key-value store
• Users are allowed to freely define the data schema 

• TSL makes message passing programming ever so easy

176



Modeling a Movie and Actor Graph



TSL-enabled Cell Accessor:
Efficient and User-friendly



Modeling Message Passing



Trinity-enabled Graph 
Computation Paradigms
• Vertex-centric graph analytics

• Prosperous since Pregel, e.g. Giraph, GraphChi

• Approximate graph computation based on local sampling 
• Enabled by randomly partitioned in-memory graph
• Fast approximate computation with minimum communication costs
• Application: distance oracle [VLDB 2014]

• Index-free real-time online query processing
• Enabled by fast in-memory distributed graph exploration
• Examples, subgraph match (vldb 2012) and Trinity.RDF (vldb 2013)



http://www.graphengine.io/



Thanks!
http://www.graphengine.io/


