mlos_bench.optimizers.mock_optimizer ==================================== .. py:module:: mlos_bench.optimizers.mock_optimizer .. autoapi-nested-parse:: Mock optimizer for mlos_bench. Mostly intended for testing and validation. This optimizer produces random suggestions. The range of the suggestions can be controlled by a config. See the test cases or example json configs for more details. Classes ------- .. autoapisummary:: mlos_bench.optimizers.mock_optimizer.MockOptimizer Module Contents --------------- .. py:class:: MockOptimizer(tunables: mlos_bench.tunables.tunable_groups.TunableGroups, config: dict, global_config: dict | None = None, service: mlos_bench.services.base_service.Service | None = None) Bases: :py:obj:`mlos_bench.optimizers.track_best_optimizer.TrackBestOptimizer` Mock optimizer to test the Environment API. Create a new optimizer for the given configuration space defined by the tunables. :param tunables: The tunables to optimize. :type tunables: TunableGroups :param config: Free-format key/value pairs of configuration parameters to pass to the optimizer. :type config: dict :param global_config: :type global_config: dict | None :param service: :type service: Service | None .. py:method:: bulk_register(configs: collections.abc.Sequence[dict], scores: collections.abc.Sequence[dict[str, mlos_bench.tunables.tunable_types.TunableValue] | None], status: collections.abc.Sequence[mlos_bench.environments.status.Status] | None = None) -> bool Pre-load the optimizer with the bulk data from previous experiments. :param configs: Records of tunable values from other experiments. :type configs: Sequence[dict] :param scores: Benchmark results from experiments that correspond to `configs`. :type scores: Sequence[Optional[dict[str, TunableValue]]] :param status: Status of the experiments that correspond to `configs`. :type status: Optional[Sequence[Status]] :returns: **is_not_empty** -- True if there is data to register, false otherwise. :rtype: bool .. py:method:: suggest() -> mlos_bench.tunables.tunable_groups.TunableGroups Generate the next (random) suggestion.