mlos_viz
========

.. py:module:: mlos_viz

.. autoapi-nested-parse::

   mlos_viz is a framework to help visualizing, explain, and gain insights from results
   from the :py:mod:`mlos_bench` framework for benchmarking and optimization automation.

   It can be installed from `pypi <https://pypi.org/project/mlos-viz>`_ via ``pip
   install mlos-viz``.

   Overview
   ++++++++

   Its main entrypoint is the :py:func:`plot` function, which can be used to
   automatically visualize :py:class:`~.ExperimentData` from :py:mod:`mlos_bench` using
   other libraries for automatic data correlation and visualization like
   :external:py:func:`dabl <dabl.plot>`.



Submodules
----------

.. toctree::
   :maxdepth: 1

   /autoapi/mlos_viz/base/index
   /autoapi/mlos_viz/dabl/index
   /autoapi/mlos_viz/util/index
   /autoapi/mlos_viz/version/index


Attributes
----------

.. autoapisummary::

   mlos_viz.__version__


Classes
-------

.. autoapisummary::

   mlos_viz.MlosVizMethod


Functions
---------

.. autoapisummary::

   mlos_viz.ignore_plotter_warnings
   mlos_viz.plot


Package Contents
----------------

.. py:class:: MlosVizMethod(*args, **kwds)

   Bases: :py:obj:`enum.Enum`


   What method to use for visualizing the Experiment results.


   .. py:attribute:: AUTO

      The default automatic :py:class:`~.ExperimentData` visualization method.


   .. py:attribute:: DABL
      :value: 'dabl'


      Use DABL for automatic data correlation and visualization of
      :py:class:`~.ExperimentData`.


.. py:function:: ignore_plotter_warnings(plotter_method: MlosVizMethod = MlosVizMethod.AUTO) -> None

   Suppress some annoying warnings from third-party data visualization packages by
   adding them to the warnings filter.

   :param plotter_method: The method to use for visualizing the Experiment results.
   :type plotter_method: MlosVizMethod


.. py:function:: plot(exp_data: mlos_bench.storage.base_experiment_data.ExperimentData | None = None, *, results_df: pandas.DataFrame | None = None, objectives: dict[str, Literal['min', 'max']] | None = None, plotter_method: MlosVizMethod = MlosVizMethod.AUTO, filter_warnings: bool = True, **kwargs: Any) -> None

   Plots the results of the given :py:class:`~.ExperimentData`.

   Intended to be used from a Jupyter notebook.

   :param exp_data: The Experiment data to plot.
   :type exp_data: ExperimentData
   :param results_df: Optional `results_df` to plot.
                      If not provided, defaults to :py:attr:`.ExperimentData.results_df` property.
   :type results_df: pandas.DataFrame | None
   :param objectives: Optional objectives to plot.
                      If not provided, defaults to :py:attr:`.ExperimentData.objectives` property.
   :type objectives: Optional[dict[str, Literal["min", "max"]]]
   :param plotter_method: The method to use for visualizing the Experiment results.
   :type plotter_method: MlosVizMethod
   :param filter_warnings: Whether or not to filter some warnings from the plotter.
   :type filter_warnings: bool
   :param kwargs: Remaining keyword arguments are passed along to the underlying plotter(s).
   :type kwargs: dict


.. py:data:: __version__
   :value: '0.6.2'