Coverage for mlos_bench/mlos_bench/optimizers/convert_configspace.py: 98%
87 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""Functions to convert TunableGroups to ConfigSpace for use with the mlos_core
6optimizers.
7"""
9import logging
10from collections.abc import Hashable
11from typing import Dict, List, Optional, Tuple, Union
13from ConfigSpace import (
14 Beta,
15 CategoricalHyperparameter,
16 Configuration,
17 ConfigurationSpace,
18 EqualsCondition,
19 Float,
20 Integer,
21 Normal,
22 Uniform,
23)
24from ConfigSpace.hyperparameters import NumericalHyperparameter
25from ConfigSpace.types import NotSet
27from mlos_bench.tunables.tunable import Tunable, TunableValue
28from mlos_bench.tunables.tunable_groups import TunableGroups
29from mlos_bench.util import try_parse_val
30from mlos_core.spaces.converters.util import (
31 QUANTIZATION_BINS_META_KEY,
32 monkey_patch_hp_quantization,
33)
35_LOG = logging.getLogger(__name__)
38class TunableValueKind:
39 """
40 Enum for the kind of the tunable value (special or not).
42 It is not a true enum because ConfigSpace wants string values.
43 """
45 # pylint: disable=too-few-public-methods
46 SPECIAL = "special"
47 RANGE = "range"
50def _normalize_weights(weights: List[float]) -> List[float]:
51 """Helper function for normalizing weights to probabilities."""
52 total = sum(weights)
53 return [w / total for w in weights]
56def _tunable_to_configspace(
57 tunable: Tunable,
58 group_name: Optional[str] = None,
59 cost: int = 0,
60) -> ConfigurationSpace:
61 """
62 Convert a single Tunable to an equivalent set of ConfigSpace Hyperparameter objects,
63 wrapped in a ConfigurationSpace for composability.
64 Note: this may be more than one Hyperparameter in the case of special value handling.
66 Parameters
67 ----------
68 tunable : Tunable
69 An mlos_bench Tunable object.
70 group_name : str
71 Human-readable id of the CovariantTunableGroup this Tunable belongs to.
72 cost : int
73 Cost to change this parameter (comes from the corresponding CovariantTunableGroup).
75 Returns
76 -------
77 cs : ConfigSpace.ConfigurationSpace
78 A ConfigurationSpace object that corresponds to the Tunable.
79 """
80 # pylint: disable=too-complex
81 meta: Dict[Hashable, TunableValue] = {"cost": cost}
82 if group_name is not None:
83 meta["group"] = group_name
84 if tunable.is_numerical and tunable.quantization_bins:
85 # Temporary workaround to dropped quantization support in ConfigSpace 1.0
86 # See Also: https://github.com/automl/ConfigSpace/issues/390
87 meta[QUANTIZATION_BINS_META_KEY] = tunable.quantization_bins
89 if tunable.type == "categorical":
90 return ConfigurationSpace(
91 {
92 tunable.name: CategoricalHyperparameter(
93 name=tunable.name,
94 choices=tunable.categories,
95 weights=_normalize_weights(tunable.weights) if tunable.weights else None,
96 default_value=tunable.default,
97 meta=meta,
98 )
99 }
100 )
102 distribution: Union[Uniform, Normal, Beta, None] = None
103 if tunable.distribution == "uniform":
104 distribution = Uniform()
105 elif tunable.distribution == "normal":
106 distribution = Normal(
107 mu=tunable.distribution_params["mu"],
108 sigma=tunable.distribution_params["sigma"],
109 )
110 elif tunable.distribution == "beta":
111 distribution = Beta(
112 alpha=tunable.distribution_params["alpha"],
113 beta=tunable.distribution_params["beta"],
114 )
115 elif tunable.distribution is not None:
116 raise TypeError(f"Invalid Distribution Type: {tunable.distribution}")
118 range_hp: NumericalHyperparameter
119 if tunable.type == "int":
120 range_hp = Integer(
121 name=tunable.name,
122 bounds=(int(tunable.range[0]), int(tunable.range[1])),
123 log=bool(tunable.is_log),
124 distribution=distribution,
125 default=(
126 int(tunable.default)
127 if tunable.in_range(tunable.default) and tunable.default is not None
128 else None
129 ),
130 meta=meta,
131 )
132 elif tunable.type == "float":
133 range_hp = Float(
134 name=tunable.name,
135 bounds=tunable.range,
136 log=bool(tunable.is_log),
137 distribution=distribution,
138 default=(
139 float(tunable.default)
140 if tunable.in_range(tunable.default) and tunable.default is not None
141 else None
142 ),
143 meta=meta,
144 )
145 else:
146 raise TypeError(f"Invalid Parameter Type: {tunable.type}")
148 monkey_patch_hp_quantization(range_hp)
149 if not tunable.special:
150 return ConfigurationSpace(space=[range_hp])
152 # Compute the probabilities of switching between regular and special values.
153 special_weights: Optional[List[float]] = None
154 switch_weights = [0.5, 0.5] # FLAML requires uniform weights.
155 if tunable.weights and tunable.range_weight is not None:
156 special_weights = _normalize_weights(tunable.weights)
157 switch_weights = _normalize_weights([sum(tunable.weights), tunable.range_weight])
159 # Create three hyperparameters: one for regular values,
160 # one for special values, and one to choose between the two.
161 (special_name, type_name) = special_param_names(tunable.name)
162 conf_space = ConfigurationSpace(
163 space=[
164 range_hp,
165 CategoricalHyperparameter(
166 name=special_name,
167 choices=tunable.special,
168 weights=special_weights,
169 default_value=tunable.default if tunable.default in tunable.special else NotSet,
170 meta=meta,
171 ),
172 CategoricalHyperparameter(
173 name=type_name,
174 choices=[TunableValueKind.SPECIAL, TunableValueKind.RANGE],
175 weights=switch_weights,
176 default_value=TunableValueKind.SPECIAL,
177 ),
178 ]
179 )
180 conf_space.add(
181 [
182 EqualsCondition(
183 conf_space[special_name], conf_space[type_name], TunableValueKind.SPECIAL
184 ),
185 EqualsCondition(
186 conf_space[tunable.name], conf_space[type_name], TunableValueKind.RANGE
187 ),
188 ]
189 )
190 return conf_space
193def tunable_groups_to_configspace(
194 tunables: TunableGroups,
195 seed: Optional[int] = None,
196) -> ConfigurationSpace:
197 """
198 Convert TunableGroups to hyperparameters in ConfigurationSpace.
200 Parameters
201 ----------
202 tunables : TunableGroups
203 A collection of tunable parameters.
205 seed : Optional[int]
206 Random seed to use.
208 Returns
209 -------
210 configspace : ConfigSpace.ConfigurationSpace
211 A new ConfigurationSpace instance that corresponds to the input TunableGroups.
212 """
213 space = ConfigurationSpace(seed=seed)
214 for tunable, group in tunables:
215 space.add_configuration_space(
216 prefix="",
217 delimiter="",
218 configuration_space=_tunable_to_configspace(
219 tunable,
220 group.name,
221 group.get_current_cost(),
222 ),
223 )
224 return space
227def tunable_values_to_configuration(tunables: TunableGroups) -> Configuration:
228 """
229 Converts a TunableGroups current values to a ConfigSpace Configuration.
231 Parameters
232 ----------
233 tunables : TunableGroups
234 The TunableGroups to take the current value from.
236 Returns
237 -------
238 ConfigSpace.Configuration
239 A ConfigSpace Configuration.
240 """
241 values: Dict[str, TunableValue] = {}
242 for tunable, _group in tunables:
243 if tunable.special:
244 (special_name, type_name) = special_param_names(tunable.name)
245 if tunable.value in tunable.special:
246 values[type_name] = TunableValueKind.SPECIAL
247 values[special_name] = tunable.value
248 else:
249 values[type_name] = TunableValueKind.RANGE
250 values[tunable.name] = tunable.value
251 else:
252 values[tunable.name] = tunable.value
253 configspace = tunable_groups_to_configspace(tunables)
254 return Configuration(configspace, values=values)
257def configspace_data_to_tunable_values(data: dict) -> Dict[str, TunableValue]:
258 """
259 Remove the fields that correspond to special values in ConfigSpace.
261 In particular, remove and keys suffixes added by `special_param_names`.
262 """
263 data = data.copy()
264 specials = [special_param_name_strip(k) for k in data.keys() if special_param_name_is_temp(k)]
265 for k in specials:
266 (special_name, type_name) = special_param_names(k)
267 if data[type_name] == TunableValueKind.SPECIAL:
268 data[k] = data[special_name]
269 if special_name in data:
270 del data[special_name]
271 del data[type_name]
272 # May need to convert numpy values to regular types.
273 data = {k: try_parse_val(v) for k, v in data.items()}
274 return data
277def special_param_names(name: str) -> Tuple[str, str]:
278 """
279 Generate the names of the auxiliary hyperparameters that correspond to a tunable
280 that can have special values.
282 NOTE: `!` characters are currently disallowed in Tunable names in order handle this logic.
284 Parameters
285 ----------
286 name : str
287 The name of the tunable parameter.
289 Returns
290 -------
291 special_name : str
292 The name of the hyperparameter that corresponds to the special value.
293 type_name : str
294 The name of the hyperparameter that chooses between the regular and the special values.
295 """
296 return (name + "!special", name + "!type")
299def special_param_name_is_temp(name: str) -> bool:
300 """
301 Check if name corresponds to a temporary ConfigSpace parameter.
303 NOTE: `!` characters are currently disallowed in Tunable names in order handle this logic.
305 Parameters
306 ----------
307 name : str
308 The name of the hyperparameter.
310 Returns
311 -------
312 is_special : bool
313 True if the name corresponds to a temporary ConfigSpace hyperparameter.
314 """
315 return name.endswith("!type")
318def special_param_name_strip(name: str) -> str:
319 """
320 Remove the temporary suffix from a special parameter name.
322 NOTE: `!` characters are currently disallowed in Tunable names in order handle this logic.
324 Parameters
325 ----------
326 name : str
327 The name of the hyperparameter.
329 Returns
330 -------
331 stripped_name : str
332 The name of the hyperparameter without the temporary suffix.
333 """
334 return name.split("!", 1)[0]