Coverage for mlos_bench/mlos_bench/optimizers/manual_optimizer.py: 96%
23 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""
6Manual config suggestor (Optimizer) for mlos_bench that proposes an explicit sequence of
7configurations.
9This is useful for testing and validation, as it allows you to run a sequence of
10configurations in a cyclic fashion.
12TODO: Add an example configuration.
13"""
15import logging
16from typing import Dict, List, Optional
18from mlos_bench.optimizers.mock_optimizer import MockOptimizer
19from mlos_bench.services.base_service import Service
20from mlos_bench.tunables.tunable import TunableValue
21from mlos_bench.tunables.tunable_groups import TunableGroups
23_LOG = logging.getLogger(__name__)
26class ManualOptimizer(MockOptimizer):
27 """Optimizer that proposes an explicit sequence of tunable values."""
29 def __init__(
30 self,
31 tunables: TunableGroups,
32 config: dict,
33 global_config: Optional[dict] = None,
34 service: Optional[Service] = None,
35 ):
36 super().__init__(tunables, config, global_config, service)
37 self._tunable_values_cycle: List[Dict[str, TunableValue]] = config.get(
38 "tunable_values_cycle", []
39 )
40 assert len(self._tunable_values_cycle) > 0, "No tunable values provided."
41 max_cycles = int(config.get("max_cycles", 1))
42 self._max_suggestions = min(
43 self._max_suggestions,
44 max_cycles * len(self._tunable_values_cycle),
45 )
47 def suggest(self) -> TunableGroups:
48 """Always produce the same sequence of explicit suggestions, in a cycle."""
49 tunables = super().suggest()
50 cycle_index = (self._iter - 1) % len(self._tunable_values_cycle)
51 tunables.assign(self._tunable_values_cycle[cycle_index])
52 _LOG.info("Iteration %d :: Suggest: %s", self._iter, tunables)
53 return tunables
55 @property
56 def supports_preload(self) -> bool:
57 return False