Coverage for mlos_bench/mlos_bench/tests/storage/tunable_config_data_test.py: 100%
26 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""Unit tests for loading the TunableConfigData."""
7from math import ceil
9from mlos_bench.storage.base_experiment_data import ExperimentData
10from mlos_bench.tests.storage import CONFIG_TRIAL_REPEAT_COUNT
11from mlos_bench.tunables.tunable_groups import TunableGroups
14def test_trial_data_tunable_config_data(
15 exp_data: ExperimentData,
16 tunable_groups: TunableGroups,
17) -> None:
18 """Check expected return values for TunableConfigData."""
19 trial_id = 1
20 expected_config_id = 1
21 trial = exp_data.trials[trial_id]
22 tunable_config = trial.tunable_config
23 assert tunable_config.tunable_config_id == expected_config_id
24 # The first should be the defaults.
25 assert tunable_config.config_dict == tunable_groups.get_param_values()
26 assert trial.tunable_config_trial_group.tunable_config == tunable_config
29def test_trial_metadata(exp_data: ExperimentData) -> None:
30 """Check expected return values for TunableConfigData metadata."""
31 assert exp_data.objectives == {"score": "min"}
32 for trial_id, trial in exp_data.trials.items():
33 assert trial.tunable_config_id == ceil(trial_id / CONFIG_TRIAL_REPEAT_COUNT)
34 assert trial.metadata_dict == {
35 # Only the first CONFIG_TRIAL_REPEAT_COUNT set should be the defaults.
36 "is_defaults": str(trial_id <= CONFIG_TRIAL_REPEAT_COUNT),
37 "opt_target_0": "score",
38 "opt_direction_0": "min",
39 "optimizer": "MockOptimizer",
40 "repeat_i": ((trial_id - 1) % CONFIG_TRIAL_REPEAT_COUNT) + 1,
41 }
44def test_trial_data_no_tunables_config_data(exp_no_tunables_data: ExperimentData) -> None:
45 """Check expected return values for TunableConfigData."""
46 empty_config: dict = {}
47 for _trial_id, trial in exp_no_tunables_data.trials.items():
48 assert trial.tunable_config.config_dict == empty_config
51def test_mixed_numerics_exp_trial_data(
52 mixed_numerics_exp_data: ExperimentData,
53 mixed_numerics_tunable_groups: TunableGroups,
54) -> None:
55 """Tests that data type conversions are retained when loading experiment data with
56 mixed numeric tunable types.
57 """
58 trial = next(iter(mixed_numerics_exp_data.trials.values()))
59 config = trial.tunable_config.config_dict
60 for tunable, _group in mixed_numerics_tunable_groups:
61 assert isinstance(config[tunable.name], tunable.dtype)