Coverage for mlos_core/mlos_core/optimizers/bayesian_optimizers/smac_optimizer.py: 87%
108 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""
6Contains the wrapper class for the :py:class:`.SmacOptimizer`.
8Notes
9-----
10See the `SMAC3 Documentation <https://automl.github.io/SMAC3/main/index.html>`_ for
11more details.
12"""
14from logging import warning
15from pathlib import Path
16from tempfile import TemporaryDirectory
17from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
18from warnings import warn
20import ConfigSpace
21import numpy.typing as npt
22import pandas as pd
24from mlos_core.optimizers.bayesian_optimizers.bayesian_optimizer import (
25 BaseBayesianOptimizer,
26)
27from mlos_core.spaces.adapters.adapter import BaseSpaceAdapter
28from mlos_core.spaces.adapters.identity_adapter import IdentityAdapter
29from mlos_core.util import drop_nulls
32class SmacOptimizer(BaseBayesianOptimizer):
33 """Wrapper class for SMAC based Bayesian optimization."""
35 def __init__(
36 self,
37 *, # pylint: disable=too-many-locals,too-many-arguments
38 parameter_space: ConfigSpace.ConfigurationSpace,
39 optimization_targets: List[str],
40 objective_weights: Optional[List[float]] = None,
41 space_adapter: Optional[BaseSpaceAdapter] = None,
42 seed: Optional[int] = 0,
43 run_name: Optional[str] = None,
44 output_directory: Optional[str] = None,
45 max_trials: int = 100,
46 n_random_init: Optional[int] = None,
47 max_ratio: Optional[float] = None,
48 use_default_config: bool = False,
49 n_random_probability: float = 0.1,
50 ):
51 """
52 Instantiate a new SMAC optimizer wrapper.
54 Parameters
55 ----------
56 parameter_space : ConfigSpace.ConfigurationSpace
57 The parameter space to optimize.
59 optimization_targets : List[str]
60 The names of the optimization targets to minimize.
62 objective_weights : Optional[List[float]]
63 Optional list of weights of optimization targets.
65 space_adapter : BaseSpaceAdapter
66 The space adapter class to employ for parameter space transformations.
68 seed : Optional[int]
69 By default SMAC uses a known seed (0) to keep results reproducible.
70 However, if a `None` seed is explicitly provided, we let a random seed
71 be produced by SMAC.
73 run_name : Optional[str]
74 Name of this run. This is used to easily distinguish across different runs.
75 If set to `None` (default), SMAC will generate a hash from metadata.
77 output_directory : Optional[str]
78 The directory where SMAC output will saved. If set to `None` (default),
79 a temporary dir will be used.
81 max_trials : int
82 Maximum number of trials (i.e., function evaluations) to be run. Defaults to 100.
83 Note that modifying this value directly affects the value of
84 `n_random_init`, if latter is set to `None`.
86 n_random_init : Optional[int]
87 Number of points evaluated at start to bootstrap the optimizer.
88 Default depends on max_trials and number of parameters and max_ratio.
89 Note: it can sometimes be useful to set this to 1 when pre-warming the
90 optimizer from historical data. See Also:
91 :py:meth:`mlos_bench.optimizers.base_optimizer.Optimizer.bulk_register`
93 max_ratio : Optional[int]
94 Maximum ratio of max_trials to be random configs to be evaluated
95 at start to bootstrap the optimizer.
96 Useful if you want to explicitly control the number of random
97 configs evaluated at start.
99 use_default_config : bool
100 Whether to use the default config for the first trial after random initialization.
102 n_random_probability : float
103 Probability of choosing to evaluate a random configuration during optimization.
104 Defaults to `0.1`. Setting this to a higher value favors exploration over exploitation.
105 """
106 super().__init__(
107 parameter_space=parameter_space,
108 optimization_targets=optimization_targets,
109 objective_weights=objective_weights,
110 space_adapter=space_adapter,
111 )
113 # Declare at the top because we need it in __del__/cleanup()
114 self._temp_output_directory: Optional[TemporaryDirectory] = None
116 # pylint: disable=import-outside-toplevel
117 from smac import HyperparameterOptimizationFacade as Optimizer_Smac
118 from smac import Scenario
119 from smac.intensifier.abstract_intensifier import AbstractIntensifier
120 from smac.main.config_selector import ConfigSelector
121 from smac.random_design.probability_design import ProbabilityRandomDesign
122 from smac.runhistory import TrialInfo
124 # Store for TrialInfo instances returned by .ask()
125 self.trial_info_map: Dict[ConfigSpace.Configuration, TrialInfo] = {}
127 # The default when not specified is to use a known seed (0) to keep results reproducible.
128 # However, if a `None` seed is explicitly provided, we let a random seed be
129 # produced by SMAC.
130 # https://automl.github.io/SMAC3/main/api/smac.scenario.html#smac.scenario.Scenario
131 seed = -1 if seed is None else seed
133 # Create temporary directory for SMAC output (if none provided)
134 if output_directory is None:
135 # pylint: disable=consider-using-with
136 try:
137 # Argument added in Python 3.10
138 self._temp_output_directory = TemporaryDirectory(ignore_cleanup_errors=True)
139 except TypeError:
140 self._temp_output_directory = TemporaryDirectory()
141 output_directory = self._temp_output_directory.name
142 assert output_directory is not None
144 if n_random_init is not None:
145 assert isinstance(n_random_init, int) and n_random_init >= 0
146 if n_random_init == max_trials and use_default_config:
147 # Increase max budgeted trials to account for use_default_config.
148 max_trials += 1
150 scenario: Scenario = Scenario(
151 self.optimizer_parameter_space,
152 objectives=self._optimization_targets,
153 name=run_name,
154 output_directory=Path(output_directory),
155 deterministic=True,
156 use_default_config=use_default_config,
157 n_trials=max_trials,
158 seed=seed or -1, # if -1, SMAC will generate a random seed internally
159 n_workers=1, # Use a single thread for evaluating trials
160 )
161 intensifier: AbstractIntensifier = Optimizer_Smac.get_intensifier(
162 scenario,
163 max_config_calls=1,
164 )
165 config_selector: ConfigSelector = Optimizer_Smac.get_config_selector(
166 scenario,
167 retrain_after=1,
168 )
170 # TODO: When bulk registering prior configs to rewarm the optimizer,
171 # there is a way to inform SMAC's initial design that we have
172 # additional_configs and can set n_configs == 0.
173 # Additionally, we may want to consider encoding those values into the
174 # runhistory when prewarming the optimizer so that the initial design
175 # doesn't reperform random init.
176 # See Also: #488
178 initial_design_args: Dict[str, Union[list, int, float, Scenario]] = {
179 "scenario": scenario,
180 # Workaround a bug in SMAC that sets a default arg to a mutable
181 # value that can cause issues when multiple optimizers are
182 # instantiated with the use_default_config option within the same
183 # process that use different ConfigSpaces so that the second
184 # receives the default config from both as an additional config.
185 "additional_configs": [],
186 }
187 if n_random_init is not None:
188 initial_design_args["n_configs"] = n_random_init
189 if n_random_init > 0.25 * max_trials and max_ratio is None:
190 warning(
191 "Number of random initial configs (%d) is "
192 + "greater than 25%% of max_trials (%d). "
193 + "Consider setting max_ratio to avoid SMAC overriding n_random_init.",
194 n_random_init,
195 max_trials,
196 )
197 if max_ratio is not None:
198 assert isinstance(max_ratio, float) and 0.0 <= max_ratio <= 1.0
199 initial_design_args["max_ratio"] = max_ratio
200 self._max_ratio = max_ratio
202 # Use the default InitialDesign from SMAC.
203 # (currently SBOL instead of LatinHypercube due to better uniformity
204 # for initial sampling which results in lower overall samples required)
205 initial_design = Optimizer_Smac.get_initial_design(
206 **initial_design_args, # type: ignore[arg-type]
207 )
208 # initial_design = LatinHypercubeInitialDesign(
209 # **initial_design_args, # type: ignore[arg-type]
210 # )
212 # Workaround a bug in SMAC that doesn't pass the seed to the random
213 # design when generated a random_design for itself via the
214 # get_random_design static method when random_design is None.
215 assert isinstance(n_random_probability, float) and n_random_probability >= 0
216 random_design = ProbabilityRandomDesign(
217 probability=n_random_probability,
218 seed=scenario.seed,
219 )
221 self.base_optimizer = Optimizer_Smac(
222 scenario,
223 SmacOptimizer._dummy_target_func,
224 initial_design=initial_design,
225 intensifier=intensifier,
226 random_design=random_design,
227 config_selector=config_selector,
228 multi_objective_algorithm=Optimizer_Smac.get_multi_objective_algorithm(
229 scenario,
230 objective_weights=self._objective_weights,
231 ),
232 overwrite=True,
233 logging_level=False, # Use the existing logger
234 )
236 def __del__(self) -> None:
237 # Best-effort attempt to clean up, in case the user forgets to call .cleanup()
238 self.cleanup()
240 @property
241 def max_ratio(self) -> Optional[float]:
242 """
243 Gets the `max_ratio` parameter used in py:meth:`constructor <.__init__>` of this
244 SmacOptimizer.
246 Returns
247 -------
248 float
249 """
250 return self._max_ratio
252 @property
253 def n_random_init(self) -> int:
254 """
255 Gets the number of random samples to use to initialize the optimizer's search
256 space sampling.
258 Note: This may not be equal to the value passed to the initializer, due to
259 logic present in the SMAC.
261 See Also
262 --------
263 :py:attr:`.max_ratio`
265 Returns
266 -------
267 int
268 The number of random samples used to initialize the optimizer's search space sampling.
269 """
270 # pylint: disable=protected-access
271 return self.base_optimizer._initial_design._n_configs
273 @staticmethod
274 def _dummy_target_func(config: ConfigSpace.Configuration, seed: int = 0) -> None:
275 """
276 Dummy target function for SMAC optimizer.
278 Since we only use the ask-and-tell interface, this is never called.
280 Parameters
281 ----------
282 config : ConfigSpace.Configuration
283 Configuration to evaluate.
285 seed : int
286 Random seed to use for the target function. Not actually used.
287 """
288 # NOTE: Providing a target function when using the ask-and-tell interface is
289 # an imperfection of the API -- this is planned to be fixed in some future
290 # release: https://github.com/automl/SMAC3/issues/946
291 raise RuntimeError("This function should never be called.")
293 def _register(
294 self,
295 *,
296 configs: pd.DataFrame,
297 scores: pd.DataFrame,
298 context: Optional[pd.DataFrame] = None,
299 metadata: Optional[pd.DataFrame] = None,
300 ) -> None:
301 """
302 Registers the given configs and scores.
304 Parameters
305 ----------
306 configs : pd.DataFrame
307 Dataframe of configs / parameters. The columns are parameter names and
308 the rows are the configs.
310 scores : pd.DataFrame
311 Scores from running the configs. The index is the same as the index of
312 the configs.
314 context : pd.DataFrame
315 Not Yet Implemented.
317 metadata: pd.DataFrame
318 Not Yet Implemented.
319 """
320 from smac.runhistory import ( # pylint: disable=import-outside-toplevel
321 StatusType,
322 TrialInfo,
323 TrialValue,
324 )
326 if context is not None:
327 warn(f"Not Implemented: Ignoring context {list(context.columns)}", UserWarning)
329 # Register each trial (one-by-one)
330 for config, (_i, score) in zip(
331 self._to_configspace_configs(configs=configs), scores.iterrows()
332 ):
333 # Retrieve previously generated TrialInfo (returned by .ask()) or create
334 # new TrialInfo instance
335 info: TrialInfo = self.trial_info_map.get(
336 config,
337 TrialInfo(config=config, seed=self.base_optimizer.scenario.seed),
338 )
339 value = TrialValue(cost=list(score.astype(float)), time=0.0, status=StatusType.SUCCESS)
340 self.base_optimizer.tell(info, value, save=False)
342 # Save optimizer once we register all configs
343 self.base_optimizer.optimizer.save()
345 def _suggest(
346 self,
347 *,
348 context: Optional[pd.DataFrame] = None,
349 ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]:
350 """
351 Suggests a new configuration.
353 Parameters
354 ----------
355 context : pd.DataFrame
356 Not Yet Implemented.
358 Returns
359 -------
360 configuration : pd.DataFrame
361 Pandas dataframe with a single row. Column names are the parameter names.
363 metadata : Optional[pd.DataFrame]
364 Not yet implemented.
365 """
366 if TYPE_CHECKING:
367 # pylint: disable=import-outside-toplevel,unused-import
368 from smac.runhistory import TrialInfo
370 if context is not None:
371 warn(f"Not Implemented: Ignoring context {list(context.columns)}", UserWarning)
373 trial: TrialInfo = self.base_optimizer.ask()
374 trial.config.check_valid_configuration()
375 ConfigSpace.Configuration(
376 self.optimizer_parameter_space,
377 values=trial.config,
378 ).check_valid_configuration()
379 assert trial.config.config_space == self.optimizer_parameter_space
380 self.trial_info_map[trial.config] = trial
381 config_df = pd.DataFrame(
382 [trial.config], columns=list(self.optimizer_parameter_space.keys())
383 )
384 return config_df, None
386 def register_pending(
387 self,
388 *,
389 configs: pd.DataFrame,
390 context: Optional[pd.DataFrame] = None,
391 metadata: Optional[pd.DataFrame] = None,
392 ) -> None:
393 raise NotImplementedError()
395 def surrogate_predict(
396 self,
397 *,
398 configs: pd.DataFrame,
399 context: Optional[pd.DataFrame] = None,
400 ) -> npt.NDArray:
401 # pylint: disable=import-outside-toplevel
402 from smac.utils.configspace import convert_configurations_to_array
404 if context is not None:
405 warn(f"Not Implemented: Ignoring context {list(context.columns)}", UserWarning)
406 if self._space_adapter and not isinstance(self._space_adapter, IdentityAdapter):
407 raise NotImplementedError("Space adapter not supported for surrogate_predict.")
409 # pylint: disable=protected-access
410 if len(self._observations) <= self.base_optimizer._initial_design._n_configs:
411 raise RuntimeError(
412 "Surrogate model can make predictions *only* after "
413 "all initial points have been evaluated "
414 f"{len(self._observations)} <= {self.base_optimizer._initial_design._n_configs}"
415 )
416 if self.base_optimizer._config_selector._model is None:
417 raise RuntimeError("Surrogate model is not yet trained")
419 config_array: npt.NDArray = convert_configurations_to_array(
420 self._to_configspace_configs(configs=configs)
421 )
422 mean_predictions, _ = self.base_optimizer._config_selector._model.predict(config_array)
423 return mean_predictions.reshape(
424 -1,
425 )
427 def acquisition_function(
428 self,
429 *,
430 configs: pd.DataFrame,
431 context: Optional[pd.DataFrame] = None,
432 ) -> npt.NDArray:
433 if context is not None:
434 warn(f"Not Implemented: Ignoring context {list(context.columns)}", UserWarning)
435 if self._space_adapter:
436 raise NotImplementedError()
438 # pylint: disable=protected-access
439 if self.base_optimizer._config_selector._acquisition_function is None:
440 raise RuntimeError("Acquisition function is not yet initialized")
442 cs_configs: list = self._to_configspace_configs(configs=configs)
443 return self.base_optimizer._config_selector._acquisition_function(cs_configs).reshape(
444 -1,
445 )
447 def cleanup(self) -> None:
448 if hasattr(self, "_temp_output_directory") and self._temp_output_directory is not None:
449 self._temp_output_directory.cleanup()
450 self._temp_output_directory = None
452 def _to_configspace_configs(self, *, configs: pd.DataFrame) -> List[ConfigSpace.Configuration]:
453 """
454 Convert a dataframe of configs to a list of ConfigSpace configs.
456 Parameters
457 ----------
458 configs : pd.DataFrame
459 Dataframe of configs / parameters. The columns are parameter names and
460 the rows are the configs.
462 Returns
463 -------
464 configs : list
465 List of ConfigSpace configs.
466 """
467 return [
468 ConfigSpace.Configuration(
469 self.optimizer_parameter_space,
470 # Remove None values for inactive parameters
471 values=drop_nulls(config.to_dict()),
472 allow_inactive_with_values=False,
473 )
474 for (_, config) in configs.astype("O").iterrows()
475 ]