Coverage for mlos_bench/mlos_bench/schedulers/sync_scheduler.py: 88%
32 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""A simple single-threaded synchronous optimization loop implementation."""
7import logging
8from datetime import datetime
10from pytz import UTC
12from mlos_bench.environments.status import Status
13from mlos_bench.schedulers.base_scheduler import Scheduler
14from mlos_bench.storage.base_storage import Storage
16_LOG = logging.getLogger(__name__)
19class SyncScheduler(Scheduler):
20 """A simple single-threaded synchronous optimization loop implementation."""
22 def start(self) -> None:
23 """Start the optimization loop."""
24 super().start()
26 is_warm_up = self.optimizer.supports_preload
27 if not is_warm_up:
28 _LOG.warning("Skip pending trials and warm-up: %s", self.optimizer)
30 not_done = True
31 while not_done:
32 _LOG.info("Optimization loop: Last trial ID: %d", self._last_trial_id)
33 self._run_schedule(is_warm_up)
34 not_done = self._schedule_new_optimizer_suggestions()
35 is_warm_up = False
37 def run_trial(self, trial: Storage.Trial) -> None:
38 """
39 Set up and run a single trial.
41 Save the results in the storage.
42 """
43 super().run_trial(trial)
45 if not self.environment.setup(trial.tunables, trial.config(self.global_config)):
46 _LOG.warning("Setup failed: %s :: %s", self.environment, trial.tunables)
47 # FIXME: Use the actual timestamp from the environment.
48 _LOG.info("QUEUE: Update trial results: %s :: %s", trial, Status.FAILED)
49 trial.update(Status.FAILED, datetime.now(UTC))
50 return
52 # Block and wait for the final result.
53 (status, timestamp, results) = self.environment.run()
54 _LOG.info("Results: %s :: %s\n%s", trial.tunables, status, results)
56 # In async mode (TODO), poll the environment for status and telemetry
57 # and update the storage with the intermediate results.
58 (_status, _timestamp, telemetry) = self.environment.status()
60 # Use the status and timestamp from `.run()` as it is the final status of the experiment.
61 # TODO: Use the `.status()` output in async mode.
62 trial.update_telemetry(status, timestamp, telemetry)
64 trial.update(status, timestamp, results)
65 _LOG.info("QUEUE: Update trial results: %s :: %s %s", trial, status, results)