Coverage for mlos_bench/mlos_bench/tests/tunables/tunable_distributions_test.py: 100%
28 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""Unit tests for checking tunable parameters' distributions."""
7import json5 as json
8import pytest
10from mlos_bench.tunables.tunable import Tunable, TunableValueTypeName
13def test_categorical_distribution() -> None:
14 """Try to instantiate a categorical tunable with distribution specified."""
15 with pytest.raises(ValueError):
16 Tunable(
17 name="test",
18 config={
19 "type": "categorical",
20 "values": ["foo", "bar", "baz"],
21 "distribution": {"type": "uniform"},
22 "default": "foo",
23 },
24 )
27@pytest.mark.parametrize("tunable_type", ["int", "float"])
28def test_numerical_distribution_uniform(tunable_type: TunableValueTypeName) -> None:
29 """Create a numeric Tunable with explicit uniform distribution."""
30 tunable = Tunable(
31 name="test",
32 config={
33 "type": tunable_type,
34 "range": [0, 10],
35 "distribution": {"type": "uniform"},
36 "default": 0,
37 },
38 )
39 assert tunable.is_numerical
40 assert tunable.distribution == "uniform"
41 assert not tunable.distribution_params
44@pytest.mark.parametrize("tunable_type", ["int", "float"])
45def test_numerical_distribution_normal(tunable_type: TunableValueTypeName) -> None:
46 """Create a numeric Tunable with explicit Gaussian distribution specified."""
47 tunable = Tunable(
48 name="test",
49 config={
50 "type": tunable_type,
51 "range": [0, 10],
52 "distribution": {"type": "normal", "params": {"mu": 0, "sigma": 1.0}},
53 "default": 0,
54 },
55 )
56 assert tunable.distribution == "normal"
57 assert tunable.distribution_params == {"mu": 0, "sigma": 1.0}
60@pytest.mark.parametrize("tunable_type", ["int", "float"])
61def test_numerical_distribution_beta(tunable_type: TunableValueTypeName) -> None:
62 """Create a numeric Tunable with explicit Beta distribution specified."""
63 tunable = Tunable(
64 name="test",
65 config={
66 "type": tunable_type,
67 "range": [0, 10],
68 "distribution": {"type": "beta", "params": {"alpha": 2, "beta": 5}},
69 "default": 0,
70 },
71 )
72 assert tunable.distribution == "beta"
73 assert tunable.distribution_params == {"alpha": 2, "beta": 5}
76@pytest.mark.parametrize("tunable_type", ["int", "float"])
77def test_numerical_distribution_unsupported(tunable_type: str) -> None:
78 """Create a numeric Tunable with unsupported distribution."""
79 json_config = f"""
80 {
81 "type": "{tunable_type}",
82 "range": [0, 10],
83 "distribution": {
84 "type": "poisson",
85 "params": {
86 "lambda": 1.0
87 }
88 } ,
89 "default": 0
90 }
91 """
92 config = json.loads(json_config)
93 with pytest.raises(ValueError):
94 Tunable(name="test", config=config)