Coverage for mlos_core/mlos_core/tests/spaces/adapters/llamatune_test.py: 99%

171 statements  

« prev     ^ index     » next       coverage.py v7.6.7, created at 2024-11-22 01:18 +0000

1# 

2# Copyright (c) Microsoft Corporation. 

3# Licensed under the MIT License. 

4# 

5"""Tests for LlamaTune space adapter.""" 

6 

7# pylint: disable=missing-function-docstring 

8 

9from typing import Any, Dict, Iterator, List, Set 

10 

11import ConfigSpace as CS 

12import pandas as pd 

13import pytest 

14 

15from mlos_core.spaces.adapters import LlamaTuneAdapter 

16from mlos_core.spaces.converters.util import ( 

17 QUANTIZATION_BINS_META_KEY, 

18 monkey_patch_cs_quantization, 

19) 

20 

21# Explicitly test quantized values with llamatune space adapter. 

22# TODO: Add log scale sampling tests as well. 

23 

24 

25def construct_parameter_space( # pylint: disable=too-many-arguments 

26 *, 

27 n_continuous_params: int = 0, 

28 n_quantized_continuous_params: int = 0, 

29 n_integer_params: int = 0, 

30 n_quantized_integer_params: int = 0, 

31 n_categorical_params: int = 0, 

32 seed: int = 1234, 

33) -> CS.ConfigurationSpace: 

34 """Helper function for construct an instance of `ConfigSpace.ConfigurationSpace`.""" 

35 input_space = CS.ConfigurationSpace( 

36 seed=seed, 

37 space=[ 

38 *( 

39 CS.UniformFloatHyperparameter(name=f"cont_{idx}", lower=0, upper=64) 

40 for idx in range(n_continuous_params) 

41 ), 

42 *( 

43 CS.UniformFloatHyperparameter( 

44 name=f"cont_{idx}", lower=0, upper=64, meta={QUANTIZATION_BINS_META_KEY: 6} 

45 ) 

46 for idx in range(n_quantized_continuous_params) 

47 ), 

48 *( 

49 CS.UniformIntegerHyperparameter(name=f"int_{idx}", lower=-1, upper=256) 

50 for idx in range(n_integer_params) 

51 ), 

52 *( 

53 CS.UniformIntegerHyperparameter( 

54 name=f"int_{idx}", lower=0, upper=256, meta={QUANTIZATION_BINS_META_KEY: 17} 

55 ) 

56 for idx in range(n_quantized_integer_params) 

57 ), 

58 *( 

59 CS.CategoricalHyperparameter( 

60 name=f"str_{idx}", choices=[f"option_{idx}" for idx in range(5)] 

61 ) 

62 for idx in range(n_categorical_params) 

63 ), 

64 ], 

65 ) 

66 return monkey_patch_cs_quantization(input_space) 

67 

68 

69@pytest.mark.parametrize( 

70 ("num_target_space_dims", "param_space_kwargs"), 

71 ( 

72 [ 

73 (num_target_space_dims, param_space_kwargs) 

74 for num_target_space_dims in (2, 4) 

75 for num_orig_space_factor in (1.5, 4) 

76 for param_space_kwargs in ( 

77 {"n_continuous_params": int(num_target_space_dims * num_orig_space_factor)}, 

78 {"n_integer_params": int(num_target_space_dims * num_orig_space_factor)}, 

79 {"n_categorical_params": int(num_target_space_dims * num_orig_space_factor)}, 

80 {"n_categorical_params": int(num_target_space_dims * num_orig_space_factor)}, 

81 {"n_quantized_integer_params": int(num_target_space_dims * num_orig_space_factor)}, 

82 { 

83 "n_quantized_continuous_params": int( 

84 num_target_space_dims * num_orig_space_factor 

85 ) 

86 }, 

87 # Mix of all three types 

88 { 

89 "n_continuous_params": int(num_target_space_dims * num_orig_space_factor / 3), 

90 "n_integer_params": int(num_target_space_dims * num_orig_space_factor / 3), 

91 "n_categorical_params": int(num_target_space_dims * num_orig_space_factor / 3), 

92 }, 

93 ) 

94 ] 

95 ), 

96) 

97def test_num_low_dims( 

98 num_target_space_dims: int, 

99 param_space_kwargs: dict, 

100) -> None: # pylint: disable=too-many-locals 

101 """Tests LlamaTune's low-to-high space projection method.""" 

102 input_space = construct_parameter_space(**param_space_kwargs) 

103 

104 # Number of target parameter space dimensions should be fewer than those of the original space 

105 with pytest.raises(ValueError): 

106 LlamaTuneAdapter( 

107 orig_parameter_space=input_space, num_low_dims=len(list(input_space.keys())) 

108 ) 

109 

110 # Enable only low-dimensional space projections 

111 adapter = LlamaTuneAdapter( 

112 orig_parameter_space=input_space, 

113 num_low_dims=num_target_space_dims, 

114 special_param_values=None, 

115 max_unique_values_per_param=None, 

116 ) 

117 

118 sampled_configs = adapter.target_parameter_space.sample_configuration(size=100) 

119 for sampled_config in sampled_configs: # pylint: disable=not-an-iterable # (false positive) 

120 # Transform low-dim config to high-dim point/config 

121 sampled_config_df = pd.DataFrame( 

122 [sampled_config.values()], columns=list(sampled_config.keys()) 

123 ) 

124 orig_config_df = adapter.transform(sampled_config_df) 

125 

126 # High-dim (i.e., original) config should be valid 

127 orig_config = CS.Configuration(input_space, values=orig_config_df.iloc[0].to_dict()) 

128 orig_config.check_valid_configuration() 

129 

130 # Transform high-dim config back to low-dim 

131 target_config_df = adapter.inverse_transform(orig_config_df) 

132 

133 # Sampled config and this should be the same 

134 target_config = CS.Configuration( 

135 adapter.target_parameter_space, 

136 values=target_config_df.iloc[0].to_dict(), 

137 ) 

138 assert target_config == sampled_config 

139 

140 # Try inverse projection (i.e., high-to-low) for previously unseen configs 

141 unseen_sampled_configs = adapter.target_parameter_space.sample_configuration(size=25) 

142 for ( 

143 unseen_sampled_config 

144 ) in unseen_sampled_configs: # pylint: disable=not-an-iterable # (false positive) 

145 if ( 

146 unseen_sampled_config in sampled_configs 

147 ): # pylint: disable=unsupported-membership-test # (false positive) 

148 continue 

149 

150 unseen_sampled_config_df = pd.DataFrame( 

151 [unseen_sampled_config.values()], columns=list(unseen_sampled_config.keys()) 

152 ) 

153 with pytest.raises(ValueError): 

154 _ = adapter.inverse_transform( 

155 unseen_sampled_config_df 

156 ) # pylint: disable=redefined-variable-type 

157 

158 

159def test_special_parameter_values_validation() -> None: 

160 """Tests LlamaTune's validation process of user-provided special parameter values 

161 dictionary. 

162 """ 

163 input_space = CS.ConfigurationSpace(seed=1234) 

164 input_space.add( 

165 CS.CategoricalHyperparameter(name="str", choices=[f"choice_{idx}" for idx in range(5)]) 

166 ) 

167 input_space.add(CS.UniformFloatHyperparameter(name="cont", lower=-1, upper=100)) 

168 input_space.add(CS.UniformIntegerHyperparameter(name="int", lower=0, upper=100)) 

169 

170 # Only UniformIntegerHyperparameters are currently supported 

171 with pytest.raises(NotImplementedError): 

172 special_param_values_dict_1 = {"str": "choice_1"} 

173 LlamaTuneAdapter( 

174 orig_parameter_space=input_space, 

175 num_low_dims=2, 

176 special_param_values=special_param_values_dict_1, 

177 max_unique_values_per_param=None, 

178 ) 

179 

180 with pytest.raises(NotImplementedError): 

181 special_param_values_dict_2 = {"cont": -1} 

182 LlamaTuneAdapter( 

183 orig_parameter_space=input_space, 

184 num_low_dims=2, 

185 special_param_values=special_param_values_dict_2, 

186 max_unique_values_per_param=None, 

187 ) 

188 

189 # Special value should belong to parameter value domain 

190 with pytest.raises(ValueError, match="value domain"): 

191 special_param_values_dict = {"int": -1} 

192 LlamaTuneAdapter( 

193 orig_parameter_space=input_space, 

194 num_low_dims=2, 

195 special_param_values=special_param_values_dict, 

196 max_unique_values_per_param=None, 

197 ) 

198 

199 # Invalid dicts; ValueError should be thrown 

200 invalid_special_param_values_dicts: List[Dict[str, Any]] = [ 

201 {"int-Q": 0}, # parameter does not exist 

202 {"int": {0: 0.2}}, # invalid definition 

203 {"int": 0.2}, # invalid parameter value 

204 {"int": (0.4, 0)}, # (biasing %, special value) instead of (special value, biasing %) 

205 {"int": [0, 0]}, # duplicate special values 

206 {"int": []}, # empty list 

207 {"int": [{0: 0.2}]}, 

208 {"int": [(0.4, 0), (1, 0.7)]}, # first tuple is inverted; second is correct 

209 {"int": [(0, 0.1), (0, 0.2)]}, # duplicate special values 

210 ] 

211 for spv_dict in invalid_special_param_values_dicts: 

212 with pytest.raises(ValueError): 

213 LlamaTuneAdapter( 

214 orig_parameter_space=input_space, 

215 num_low_dims=2, 

216 special_param_values=spv_dict, 

217 max_unique_values_per_param=None, 

218 ) 

219 

220 # Biasing percentage of special value(s) are invalid 

221 invalid_special_param_values_dicts = [ 

222 {"int": (0, 1.1)}, # >1 probability 

223 {"int": (0, 0)}, # Zero probability 

224 {"int": (0, -0.1)}, # Negative probability 

225 {"int": (0, 20)}, # 2,000% instead of 20% 

226 {"int": [0, 1, 2, 3, 4, 5]}, # default biasing is 20%; 6 values * 20% > 100% 

227 {"int": [(0, 0.4), (1, 0.7)]}, # combined probability >100% 

228 {"int": [(0, -0.4), (1, 0.7)]}, # probability for value 0 is invalid. 

229 ] 

230 

231 for spv_dict in invalid_special_param_values_dicts: 

232 with pytest.raises(ValueError): 

233 LlamaTuneAdapter( 

234 orig_parameter_space=input_space, 

235 num_low_dims=2, 

236 special_param_values=spv_dict, 

237 max_unique_values_per_param=None, 

238 ) 

239 

240 

241def gen_random_configs(adapter: LlamaTuneAdapter, num_configs: int) -> Iterator[CS.Configuration]: 

242 for sampled_config in adapter.target_parameter_space.sample_configuration(size=num_configs): 

243 # Transform low-dim config to high-dim config 

244 sampled_config_df = pd.DataFrame( 

245 [sampled_config.values()], columns=list(sampled_config.keys()) 

246 ) 

247 orig_config_df = adapter.transform(sampled_config_df) 

248 orig_config = CS.Configuration( 

249 adapter.orig_parameter_space, 

250 values=orig_config_df.iloc[0].to_dict(), 

251 ) 

252 yield orig_config 

253 

254 

255def test_special_parameter_values_biasing() -> None: # pylint: disable=too-complex 

256 """Tests LlamaTune's special parameter values biasing methodology.""" 

257 input_space = CS.ConfigurationSpace(seed=1234) 

258 input_space.add(CS.UniformIntegerHyperparameter(name="int_1", lower=0, upper=100)) 

259 input_space.add(CS.UniformIntegerHyperparameter(name="int_2", lower=0, upper=100)) 

260 

261 num_configs = 400 

262 bias_percentage = LlamaTuneAdapter.DEFAULT_SPECIAL_PARAM_VALUE_BIASING_PERCENTAGE 

263 eps = 0.2 

264 

265 # Single parameter; single special value 

266 special_param_value_dicts: List[Dict[str, Any]] = [ 

267 {"int_1": 0}, 

268 {"int_1": (0, bias_percentage)}, 

269 {"int_1": [0]}, 

270 {"int_1": [(0, bias_percentage)]}, 

271 ] 

272 

273 for spv_dict in special_param_value_dicts: 

274 adapter = LlamaTuneAdapter( 

275 orig_parameter_space=input_space, 

276 num_low_dims=1, 

277 special_param_values=spv_dict, 

278 max_unique_values_per_param=None, 

279 ) 

280 

281 special_value_occurrences = sum( 

282 1 for config in gen_random_configs(adapter, num_configs) if config["int_1"] == 0 

283 ) 

284 assert (1 - eps) * int(num_configs * bias_percentage) <= special_value_occurrences 

285 

286 # Single parameter; multiple special values 

287 special_param_value_dicts = [ 

288 {"int_1": [0, 1]}, 

289 {"int_1": [(0, bias_percentage), (1, bias_percentage)]}, 

290 ] 

291 

292 for spv_dict in special_param_value_dicts: 

293 adapter = LlamaTuneAdapter( 

294 orig_parameter_space=input_space, 

295 num_low_dims=1, 

296 special_param_values=spv_dict, 

297 max_unique_values_per_param=None, 

298 ) 

299 

300 special_values_occurrences = {0: 0, 1: 0} 

301 for config in gen_random_configs(adapter, num_configs): 

302 if config["int_1"] == 0: 

303 special_values_occurrences[0] += 1 

304 elif config["int_1"] == 1: 

305 special_values_occurrences[1] += 1 

306 

307 assert (1 - eps) * int(num_configs * bias_percentage) <= special_values_occurrences[0] 

308 assert (1 - eps) * int(num_configs * bias_percentage) <= special_values_occurrences[1] 

309 

310 # Multiple parameters; multiple special values; different biasing percentage 

311 spv_dict = { 

312 "int_1": [(0, bias_percentage), (1, bias_percentage / 2)], 

313 "int_2": [(2, bias_percentage / 2), (100, bias_percentage * 1.5)], 

314 } 

315 adapter = LlamaTuneAdapter( 

316 orig_parameter_space=input_space, 

317 num_low_dims=1, 

318 special_param_values=spv_dict, 

319 max_unique_values_per_param=None, 

320 ) 

321 

322 special_values_instances: Dict[str, Dict[int, int]] = { 

323 "int_1": {0: 0, 1: 0}, 

324 "int_2": {2: 0, 100: 0}, 

325 } 

326 for config in gen_random_configs(adapter, num_configs): 

327 if config["int_1"] == 0: 

328 special_values_instances["int_1"][0] += 1 

329 elif config["int_1"] == 1: 

330 special_values_instances["int_1"][1] += 1 

331 

332 if config["int_2"] == 2: 

333 special_values_instances["int_2"][2] += 1 

334 elif config["int_2"] == 100: 

335 special_values_instances["int_2"][100] += 1 

336 

337 assert (1 - eps) * int(num_configs * bias_percentage) <= special_values_instances["int_1"][0] 

338 assert (1 - eps) * int(num_configs * bias_percentage / 2) <= ( 

339 special_values_instances["int_1"][1] 

340 ) 

341 assert (1 - eps) * int(num_configs * bias_percentage / 2) <= ( 

342 special_values_instances["int_2"][2] 

343 ) 

344 assert (1 - eps) * int(num_configs * bias_percentage * 1.5) <= ( 

345 special_values_instances["int_2"][100] 

346 ) 

347 

348 

349def test_max_unique_values_per_param() -> None: 

350 """Tests LlamaTune's parameter values discretization implementation.""" 

351 # Define config space with a mix of different parameter types 

352 input_space = CS.ConfigurationSpace(seed=1234) 

353 input_space.add( 

354 CS.UniformFloatHyperparameter(name="cont_1", lower=0, upper=5), 

355 ) 

356 input_space.add(CS.UniformFloatHyperparameter(name="cont_2", lower=1, upper=100)) 

357 input_space.add(CS.UniformIntegerHyperparameter(name="int_1", lower=1, upper=10)) 

358 input_space.add(CS.UniformIntegerHyperparameter(name="int_2", lower=0, upper=2048)) 

359 input_space.add(CS.CategoricalHyperparameter(name="str_1", choices=["on", "off"])) 

360 input_space.add( 

361 CS.CategoricalHyperparameter(name="str_2", choices=[f"choice_{idx}" for idx in range(10)]) 

362 ) 

363 

364 # Restrict the number of unique parameter values 

365 num_configs = 200 

366 for max_unique_values_per_param in (5, 25, 100): 

367 adapter = LlamaTuneAdapter( 

368 orig_parameter_space=input_space, 

369 num_low_dims=3, 

370 special_param_values=None, 

371 max_unique_values_per_param=max_unique_values_per_param, 

372 ) 

373 

374 # Keep track of unique values generated for each parameter 

375 unique_values_dict: Dict[str, set] = {param: set() for param in list(input_space.keys())} 

376 for config in gen_random_configs(adapter, num_configs): 

377 for param, value in config.items(): 

378 unique_values_dict[param].add(value) 

379 

380 # Ensure that their number is less than the maximum number allowed 

381 for _, unique_values in unique_values_dict.items(): 

382 assert len(unique_values) <= max_unique_values_per_param 

383 

384 

385@pytest.mark.parametrize( 

386 ("num_target_space_dims", "param_space_kwargs"), 

387 ( 

388 [ 

389 (num_target_space_dims, param_space_kwargs) 

390 for num_target_space_dims in (2, 4) 

391 for num_orig_space_factor in (1.5, 4) 

392 for param_space_kwargs in ( 

393 {"n_continuous_params": int(num_target_space_dims * num_orig_space_factor)}, 

394 {"n_integer_params": int(num_target_space_dims * num_orig_space_factor)}, 

395 {"n_categorical_params": int(num_target_space_dims * num_orig_space_factor)}, 

396 {"n_quantized_integer_params": int(num_target_space_dims * num_orig_space_factor)}, 

397 { 

398 "n_quantized_continuous_params": int( 

399 num_target_space_dims * num_orig_space_factor 

400 ) 

401 }, 

402 # Mix of all three types 

403 { 

404 "n_continuous_params": int(num_target_space_dims * num_orig_space_factor / 3), 

405 "n_integer_params": int(num_target_space_dims * num_orig_space_factor / 3), 

406 "n_categorical_params": int(num_target_space_dims * num_orig_space_factor / 3), 

407 }, 

408 ) 

409 ] 

410 ), 

411) 

412def test_approx_inverse_mapping( 

413 num_target_space_dims: int, 

414 param_space_kwargs: dict, 

415) -> None: # pylint: disable=too-many-locals 

416 """Tests LlamaTune's approximate high-to-low space projection method, using pseudo- 

417 inverse. 

418 """ 

419 input_space = construct_parameter_space(**param_space_kwargs) 

420 

421 # Enable low-dimensional space projection, but disable reverse mapping 

422 adapter = LlamaTuneAdapter( 

423 orig_parameter_space=input_space, 

424 num_low_dims=num_target_space_dims, 

425 special_param_values=None, 

426 max_unique_values_per_param=None, 

427 use_approximate_reverse_mapping=False, 

428 ) 

429 

430 sampled_config = input_space.sample_configuration() # size=1) 

431 with pytest.raises(ValueError): 

432 sampled_config_df = pd.DataFrame( 

433 [sampled_config.values()], columns=list(sampled_config.keys()) 

434 ) 

435 _ = adapter.inverse_transform(sampled_config_df) 

436 

437 # Enable low-dimensional space projection *and* reverse mapping 

438 adapter = LlamaTuneAdapter( 

439 orig_parameter_space=input_space, 

440 num_low_dims=num_target_space_dims, 

441 special_param_values=None, 

442 max_unique_values_per_param=None, 

443 use_approximate_reverse_mapping=True, 

444 ) 

445 

446 # Warning should be printed the first time 

447 sampled_config = input_space.sample_configuration() # size=1) 

448 with pytest.warns(UserWarning): 

449 sampled_config_df = pd.DataFrame( 

450 [sampled_config.values()], columns=list(sampled_config.keys()) 

451 ) 

452 target_config_df = adapter.inverse_transform(sampled_config_df) 

453 # Low-dim (i.e., target) config should be valid 

454 target_config = CS.Configuration( 

455 adapter.target_parameter_space, 

456 values=target_config_df.iloc[0].to_dict(), 

457 ) 

458 target_config.check_valid_configuration() 

459 

460 # Test inverse transform with 100 random configs 

461 for _ in range(100): 

462 sampled_config = input_space.sample_configuration() # size=1) 

463 sampled_config_df = pd.DataFrame( 

464 [sampled_config.values()], columns=list(sampled_config.keys()) 

465 ) 

466 target_config_df = adapter.inverse_transform(sampled_config_df) 

467 # Low-dim (i.e., target) config should be valid 

468 target_config = CS.Configuration( 

469 adapter.target_parameter_space, 

470 values=target_config_df.iloc[0].to_dict(), 

471 ) 

472 target_config.check_valid_configuration() 

473 

474 

475@pytest.mark.parametrize( 

476 ("num_low_dims", "special_param_values", "max_unique_values_per_param"), 

477 ( 

478 [ 

479 (num_low_dims, special_param_values, max_unique_values_per_param) 

480 for num_low_dims in (8, 16) 

481 for special_param_values in ( 

482 {"int_1": -1, "int_2": -1, "int_3": -1, "int_4": [-1, 0]}, 

483 { 

484 "int_1": (-1, 0.1), 

485 "int_2": -1, 

486 "int_3": (-1, 0.3), 

487 "int_4": [(-1, 0.1), (0, 0.2)], 

488 }, 

489 ) 

490 for max_unique_values_per_param in (50, 250) 

491 ] 

492 ), 

493) 

494def test_llamatune_pipeline( 

495 num_low_dims: int, 

496 special_param_values: dict, 

497 max_unique_values_per_param: int, 

498) -> None: 

499 """Tests LlamaTune space adapter when all components are active.""" 

500 # pylint: disable=too-many-locals 

501 

502 # Define config space with a mix of different parameter types 

503 input_space = construct_parameter_space( 

504 n_continuous_params=10, 

505 n_integer_params=10, 

506 n_categorical_params=5, 

507 ) 

508 adapter = LlamaTuneAdapter( 

509 orig_parameter_space=input_space, 

510 num_low_dims=num_low_dims, 

511 special_param_values=special_param_values, 

512 max_unique_values_per_param=max_unique_values_per_param, 

513 ) 

514 

515 special_value_occurrences = { 

516 # pylint: disable=protected-access 

517 param: {special_value: 0 for special_value, _ in tuples_list} 

518 for param, tuples_list in adapter._special_param_values_dict.items() 

519 } 

520 unique_values_dict: Dict[str, Set] = {param: set() for param in input_space.keys()} 

521 

522 num_configs = 1000 

523 for config in adapter.target_parameter_space.sample_configuration( 

524 size=num_configs 

525 ): # pylint: disable=not-an-iterable 

526 # Transform low-dim config to high-dim point/config 

527 sampled_config_df = pd.DataFrame([config.values()], columns=list(config.keys())) 

528 orig_config_df = adapter.transform(sampled_config_df) 

529 # High-dim (i.e., original) config should be valid 

530 orig_config = CS.Configuration(input_space, values=orig_config_df.iloc[0].to_dict()) 

531 orig_config.check_valid_configuration() 

532 

533 # Transform high-dim config back to low-dim 

534 target_config_df = adapter.inverse_transform(orig_config_df) 

535 # Sampled config and this should be the same 

536 target_config = CS.Configuration( 

537 adapter.target_parameter_space, 

538 values=target_config_df.iloc[0].to_dict(), 

539 ) 

540 assert target_config == config 

541 

542 for param, value in orig_config.items(): 

543 # Keep track of special value occurrences 

544 if param in special_value_occurrences: 

545 if value in special_value_occurrences[param]: 

546 special_value_occurrences[param][value] += 1 

547 

548 # Keep track of unique values generated for each parameter 

549 unique_values_dict[param].add(value) 

550 

551 # Ensure that occurrences of special values do not significantly deviate from expected 

552 eps = 0.2 

553 for ( 

554 param, 

555 tuples_list, 

556 ) in adapter._special_param_values_dict.items(): # pylint: disable=protected-access 

557 for value, bias_percentage in tuples_list: 

558 assert (1 - eps) * int(num_configs * bias_percentage) <= special_value_occurrences[ 

559 param 

560 ][value] 

561 

562 # Ensure that number of unique values is less than the maximum number allowed 

563 for _, unique_values in unique_values_dict.items(): 

564 assert len(unique_values) <= max_unique_values_per_param 

565 

566 

567@pytest.mark.parametrize( 

568 ("num_target_space_dims", "param_space_kwargs"), 

569 ( 

570 [ 

571 (num_target_space_dims, param_space_kwargs) 

572 for num_target_space_dims in (2, 4) 

573 for num_orig_space_factor in (1.5, 4) 

574 for param_space_kwargs in ( 

575 {"n_continuous_params": int(num_target_space_dims * num_orig_space_factor)}, 

576 {"n_integer_params": int(num_target_space_dims * num_orig_space_factor)}, 

577 {"n_categorical_params": int(num_target_space_dims * num_orig_space_factor)}, 

578 # Mix of all three types 

579 { 

580 "n_continuous_params": int(num_target_space_dims * num_orig_space_factor / 3), 

581 "n_integer_params": int(num_target_space_dims * num_orig_space_factor / 3), 

582 "n_categorical_params": int(num_target_space_dims * num_orig_space_factor / 3), 

583 }, 

584 ) 

585 ] 

586 ), 

587) 

588def test_deterministic_behavior_for_same_seed( 

589 num_target_space_dims: int, 

590 param_space_kwargs: dict, 

591) -> None: 

592 """Tests LlamaTune's space adapter deterministic behavior when given same seed in 

593 the input parameter space. 

594 """ 

595 

596 def generate_target_param_space_configs(seed: int) -> List[CS.Configuration]: 

597 input_space = construct_parameter_space(**param_space_kwargs, seed=seed) 

598 

599 # Init adapter and sample points in the low-dim space 

600 adapter = LlamaTuneAdapter( 

601 orig_parameter_space=input_space, 

602 num_low_dims=num_target_space_dims, 

603 special_param_values=None, 

604 max_unique_values_per_param=None, 

605 use_approximate_reverse_mapping=False, 

606 ) 

607 

608 sample_configs: List[CS.Configuration] = ( 

609 adapter.target_parameter_space.sample_configuration(size=100) 

610 ) 

611 return sample_configs 

612 

613 assert generate_target_param_space_configs(42) == generate_target_param_space_configs(42) 

614 assert generate_target_param_space_configs(1234) != generate_target_param_space_configs(42)