Coverage for mlos_bench/mlos_bench/tests/environments/mock_env_test.py: 100%
41 statements
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
« prev ^ index » next coverage.py v7.6.7, created at 2024-11-22 01:18 +0000
1#
2# Copyright (c) Microsoft Corporation.
3# Licensed under the MIT License.
4#
5"""Unit tests for mock benchmark environment."""
6import pytest
8from mlos_bench.environments.mock_env import MockEnv
9from mlos_bench.tunables.tunable_groups import TunableGroups
12def test_mock_env_default(mock_env: MockEnv, tunable_groups: TunableGroups) -> None:
13 """Check the default values of the mock environment."""
14 with mock_env as env_context:
15 assert env_context.setup(tunable_groups)
16 (status, _ts, data) = env_context.run()
17 assert status.is_succeeded()
18 assert data is not None
19 assert data["score"] == pytest.approx(73.97, 0.01)
20 # Second time, results should differ because of the noise.
21 (status, _ts, data) = env_context.run()
22 assert status.is_succeeded()
23 assert data is not None
24 assert data["score"] == pytest.approx(72.92, 0.01)
27def test_mock_env_no_noise(mock_env_no_noise: MockEnv, tunable_groups: TunableGroups) -> None:
28 """Check the default values of the mock environment."""
29 with mock_env_no_noise as env_context:
30 assert env_context.setup(tunable_groups)
31 for _ in range(10):
32 # Noise-free results should be the same every time.
33 (status, _ts, data) = env_context.run()
34 assert status.is_succeeded()
35 assert data is not None
36 assert data["score"] == pytest.approx(75.0, 0.01)
39@pytest.mark.parametrize(
40 ("tunable_values", "expected_score"),
41 [
42 (
43 {"vmSize": "Standard_B2ms", "idle": "halt", "kernel_sched_migration_cost_ns": 250000},
44 66.4,
45 ),
46 (
47 {"vmSize": "Standard_B4ms", "idle": "halt", "kernel_sched_migration_cost_ns": 40000},
48 74.06,
49 ),
50 ],
51)
52def test_mock_env_assign(
53 mock_env: MockEnv,
54 tunable_groups: TunableGroups,
55 tunable_values: dict,
56 expected_score: float,
57) -> None:
58 """Check the benchmark values of the mock environment after the assignment."""
59 with mock_env as env_context:
60 tunable_groups.assign(tunable_values)
61 assert env_context.setup(tunable_groups)
62 (status, _ts, data) = env_context.run()
63 assert status.is_succeeded()
64 assert data is not None
65 assert data["score"] == pytest.approx(expected_score, 0.01)
68@pytest.mark.parametrize(
69 ("tunable_values", "expected_score"),
70 [
71 (
72 {"vmSize": "Standard_B2ms", "idle": "halt", "kernel_sched_migration_cost_ns": 250000},
73 67.5,
74 ),
75 (
76 {"vmSize": "Standard_B4ms", "idle": "halt", "kernel_sched_migration_cost_ns": 40000},
77 75.1,
78 ),
79 ],
80)
81def test_mock_env_no_noise_assign(
82 mock_env_no_noise: MockEnv,
83 tunable_groups: TunableGroups,
84 tunable_values: dict,
85 expected_score: float,
86) -> None:
87 """Check the benchmark values of the noiseless mock environment after the
88 assignment.
89 """
90 with mock_env_no_noise as env_context:
91 tunable_groups.assign(tunable_values)
92 assert env_context.setup(tunable_groups)
93 for _ in range(10):
94 # Noise-free environment should produce the same results every time.
95 (status, _ts, data) = env_context.run()
96 assert status.is_succeeded()
97 assert data is not None
98 assert data["score"] == pytest.approx(expected_score, 0.01)