Source code for block_zoo.BiLSTM

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.

import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np
from block_zoo.BaseLayer import BaseLayer, BaseConf
from utils.DocInherit import DocInherit
import copy

[docs]class BiLSTMConf(BaseConf): """ Configuration of BiLSTM Args: hidden_dim (int): dimension of hidden state dropout (float): dropout rate num_layers (int): number of BiLSTM layers """ def __init__(self, **kwargs): super(BiLSTMConf, self).__init__(**kwargs)
[docs] @DocInherit def default(self): self.hidden_dim = 128 self.dropout = 0.0 self.num_layers = 1
[docs] @DocInherit def declare(self): self.num_of_inputs = 1 self.input_ranks = [3]
[docs] @DocInherit def inference(self): self.output_dim = copy.deepcopy(self.input_dims[0]) self.output_dim[-1] = 2 * self.hidden_dim super(BiLSTMConf, self).inference() # PUT THIS LINE AT THE END OF inference()
[docs] @DocInherit def verify(self): super(BiLSTMConf, self).verify() necessary_attrs_for_user = ['hidden_dim', 'dropout', 'num_layers'] for attr in necessary_attrs_for_user: self.add_attr_exist_assertion_for_user(attr)
[docs]class BiLSTM(BaseLayer): """ Bidrectional LSTM Args: layer_conf (BiLSTMConf): configuration of a layer """ def __init__(self, layer_conf): super(BiLSTM, self).__init__(layer_conf) self.lstm = nn.LSTM(layer_conf.input_dims[0][-1], layer_conf.hidden_dim, layer_conf.num_layers, bidirectional=True, dropout=layer_conf.dropout, batch_first=True)
[docs] def forward(self, string, string_len): """ process inputs Args: string (Tensor): [batch_size, seq_len, dim] string_len (Tensor): [batch_size] Returns: Tensor: [batch_size, seq_len, 2 * hidden_dim] """ padded_seq_len = string.shape[1] # Sort by length (keep idx) str_len, idx_sort = (-string_len).sort() str_len = -str_len idx_unsort = idx_sort.sort()[1] string = string.index_select(0, idx_sort) # Handling padding in Recurrent Networks string_packed = nn.utils.rnn.pack_padded_sequence(string, str_len, batch_first=True) self.lstm.flatten_parameters() string_output = self.lstm(string_packed)[0] # seqlen x batch x 2*nhid string_output = nn.utils.rnn.pad_packed_sequence(string_output, batch_first=True, total_length=padded_seq_len)[0] # Un-sort by length string_output = string_output.index_select(0, idx_unsort) return string_output, string_len