# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from block_zoo.BaseLayer import BaseLayer, BaseConf
from utils.DocInherit import DocInherit
import copy
[docs]class BiLSTMConf(BaseConf):
""" Configuration of BiLSTM
Args:
hidden_dim (int): dimension of hidden state
dropout (float): dropout rate
num_layers (int): number of BiLSTM layers
"""
def __init__(self, **kwargs):
super(BiLSTMConf, self).__init__(**kwargs)
[docs] @DocInherit
def default(self):
self.hidden_dim = 128
self.dropout = 0.0
self.num_layers = 1
[docs] @DocInherit
def declare(self):
self.num_of_inputs = 1
self.input_ranks = [3]
[docs] @DocInherit
def inference(self):
self.output_dim = copy.deepcopy(self.input_dims[0])
self.output_dim[-1] = 2 * self.hidden_dim
super(BiLSTMConf, self).inference() # PUT THIS LINE AT THE END OF inference()
[docs] @DocInherit
def verify(self):
super(BiLSTMConf, self).verify()
necessary_attrs_for_user = ['hidden_dim', 'dropout', 'num_layers']
for attr in necessary_attrs_for_user:
self.add_attr_exist_assertion_for_user(attr)
[docs]class BiLSTM(BaseLayer):
""" Bidrectional LSTM
Args:
layer_conf (BiLSTMConf): configuration of a layer
"""
def __init__(self, layer_conf):
super(BiLSTM, self).__init__(layer_conf)
self.lstm = nn.LSTM(layer_conf.input_dims[0][-1], layer_conf.hidden_dim, layer_conf.num_layers, bidirectional=True,
dropout=layer_conf.dropout, batch_first=True)
[docs] def forward(self, string, string_len):
""" process inputs
Args:
string (Tensor): [batch_size, seq_len, dim]
string_len (Tensor): [batch_size]
Returns:
Tensor: [batch_size, seq_len, 2 * hidden_dim]
"""
padded_seq_len = string.shape[1]
# Sort by length (keep idx)
str_len, idx_sort = (-string_len).sort()
str_len = -str_len
idx_unsort = idx_sort.sort()[1]
string = string.index_select(0, idx_sort)
# Handling padding in Recurrent Networks
string_packed = nn.utils.rnn.pack_padded_sequence(string, str_len, batch_first=True)
self.lstm.flatten_parameters()
string_output = self.lstm(string_packed)[0] # seqlen x batch x 2*nhid
string_output = nn.utils.rnn.pad_packed_sequence(string_output, batch_first=True, total_length=padded_seq_len)[0]
# Un-sort by length
string_output = string_output.index_select(0, idx_unsort)
return string_output, string_len