# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from block_zoo.BaseLayer import BaseLayer, BaseConf
from utils.DocInherit import DocInherit
[docs]class BiLSTMLastConf(BaseConf):
""" Configuration of BiLSTMLast
Args:
hidden_dim (int): dimension of hidden state
dropout (float): dropout rate
num_layers (int): number of BiLSTM layers
"""
def __init__(self, **kwargs):
super(BiLSTMLastConf, self).__init__(**kwargs)
[docs] @DocInherit
def default(self):
self.hidden_dim = 128
self.dropout = 0.0
self.num_layers = 1
[docs] @DocInherit
def declare(self):
self.num_of_inputs = 1
self.input_ranks = [3]
[docs] @DocInherit
def inference(self):
self.output_dim = [-1]
self.output_dim.append(2 * self.hidden_dim)
super(BiLSTMLastConf, self).inference() # PUT THIS LINE AT THE END OF inference()
[docs] @DocInherit
def verify(self):
super(BiLSTMLastConf, self).verify()
necessary_attrs_for_user = ['hidden_dim', 'dropout', 'num_layers']
for attr in necessary_attrs_for_user:
self.add_attr_exist_assertion_for_user(attr)
[docs]class BiLSTMLast(BaseLayer):
""" get last hidden states of Bidrectional LSTM
Args:
layer_conf (BiLSTMConf): configuration of a layer
"""
def __init__(self, layer_conf):
super(BiLSTMLast, self).__init__(layer_conf)
self.lstm = nn.LSTM(layer_conf.input_dims[0][-1], layer_conf.hidden_dim, layer_conf.num_layers, bidirectional=True,
dropout=layer_conf.dropout, batch_first=True)
[docs] def forward(self, string, string_len):
""" process inputs
Args:
string (Tensor): [batch_size, seq_len, dim]
string_len (Tensor): [batch_size]
Returns:
Tensor: [batch_size, 2 * hidden_dim]
"""
str_len, idx_sort = (-string_len).sort()
str_len = -str_len
idx_unsort = idx_sort.sort()[1]
string = string.index_select(0, idx_sort)
# Handling padding in Recurrent Networks
string_packed = nn.utils.rnn.pack_padded_sequence(string, str_len, batch_first=True)
self.lstm.flatten_parameters()
string_output, (hn, cn) = self.lstm(string_packed) # seqlen x batch x 2*nhid
emb = torch.cat((hn[0], hn[1]), 1) # batch x 2*nhid
emb = emb.index_select(0, idx_unsort)
return emb, string_len