Source code for block_zoo.encoder_decoder.SLUEncoder

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.

import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np
from block_zoo.BaseLayer import BaseLayer, BaseConf
#from layers.EncoderDecoder import EncoderDecoderConf
from utils.DocInherit import DocInherit
from utils.corpus_utils import get_seq_mask
import copy

[docs]class SLUEncoderConf(BaseConf): """ Configuration of Spoken Language Understanding Encoder References: Liu, B., & Lane, I. (2016). Attention-based recurrent neural network models for joint intent detection and slot filling. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, (1), 685–689. https://doi.org/10.21437/Interspeech.2016-1352 Args: hidden_dim (int): dimension of hidden state dropout (float): dropout rate num_layers (int): number of BiLSTM layers """ def __init__(self, **kwargs): super(SLUEncoderConf, self).__init__(**kwargs)
[docs] @DocInherit def default(self): self.hidden_dim = 128 self.dropout = 0.0 self.num_layers = 1
[docs] @DocInherit def declare(self): self.num_of_inputs = 1 self.input_ranks = [3]
[docs] @DocInherit def inference(self): self.output_dim = copy.deepcopy(self.input_dims[0]) self.output_dim[-1] = 2 * self.hidden_dim #no matter what the num_layers is self.output_context_dim = copy.deepcopy(self.input_dims[0]) self.output_context_dim[-1] = 2 * self.hidden_dim #no matter what the num_layers is super(SLUEncoderConf, self).inference() # PUT THIS LINE AT THE END OF inference()
[docs] @DocInherit def verify_before_inference(self): super(SLUEncoderConf, self).verify_before_inference() necessary_attrs_for_user = ['hidden_dim'] for attr in necessary_attrs_for_user: self.add_attr_exist_assertion_for_user(attr)
[docs] @DocInherit def verify(self): super(SLUEncoderConf, self).verify() necessary_attrs_for_user = ['dropout', 'num_layers'] for attr in necessary_attrs_for_user: self.add_attr_exist_assertion_for_user(attr)
[docs]class SLUEncoder(BaseLayer): """ Spoken Language Understanding Encoder References: Liu, B., & Lane, I. (2016). Attention-based recurrent neural network models for joint intent detection and slot filling. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, (1), 685–689. https://doi.org/10.21437/Interspeech.2016-1352 Args: layer_conf (SLUEncoderConf): configuration of a layer """ def __init__(self, layer_conf): super(SLUEncoder, self).__init__(layer_conf) self.layer_conf = layer_conf self.lstm = nn.LSTM(layer_conf.input_dims[0][-1], layer_conf.hidden_dim, layer_conf.num_layers, batch_first=True, bidirectional=True, dropout=layer_conf.dropout)
[docs] def forward(self, string, string_len): """ process inputs Args: string (Variable): [batch_size, seq_len, dim] string_len (ndarray): [batch_size] Returns: Variable: output of bi-lstm with shape [batch_size, seq_len, 2 * hidden_dim] ndarray: string_len with shape [batch_size] Variable: context with shape [batch_size, 1, 2 * hidden_dim] """ if torch.cuda.device_count() > 1: # otherwise, it will raise a Exception because the length inconsistence string_mask = torch.ByteTensor(1 - get_seq_mask(string_len, max_seq_len=string.shape[1])) # [batch_size, max_seq_len] else: string_mask = torch.ByteTensor(1 - get_seq_mask(string_len)) # [batch_size, max_seq_len] hidden_init = torch.zeros(self.layer_conf.num_layers * 2, string.size(0), self.layer_conf.hidden_dim) context_init = torch.zeros(self.layer_conf.num_layers * 2, string.size(0), self.layer_conf.hidden_dim) if self.is_cuda(): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") string_mask = string_mask.to(device) hidden_init = hidden_init.to(device) context_init = context_init.to(device) hidden = (hidden_init, context_init) self.lstm.flatten_parameters() output, hidden = self.lstm(string, hidden) assert output.shape[1] == string_mask.shape[1] real_context = [] for i, o in enumerate(output): real_length = string_mask[i].data.tolist().count(0) real_context.append(o[real_length - 1]) return output, torch.cat(real_context).view(string.size(0), -1).unsqueeze(1)