Source code for block_zoo.math.Add2D

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.

import torch
import torch.nn as nn
import logging

from ..BaseLayer import BaseConf
from utils.DocInherit import DocInherit
from utils.exceptions import ConfigurationError
import copy

[docs]class Add2DConf(BaseConf): """ Configuration of Add2D layer """ #init the args def __init__(self, **kwargs): super(Add2DConf, self).__init__(**kwargs) #set default params #@DocInherit #def default(self):
[docs] @DocInherit def declare(self): self.num_of_inputs = 2 self.input_ranks = [2,2]
[docs] @DocInherit def inference(self): self.output_dim = copy.deepcopy(self.input_dims[0]) if self.input_dims[0][1] != 1: self.output_dim[-1] = self.input_dims[0][1] else: self.output_dim[-1] = self.input_dims[1][1] super(Add2DConf, self).inference()
[docs] @DocInherit def verify(self): super(Add2DConf, self).verify() # # to check if the ranks of all the inputs are equal # rank_equal_flag = True # for i in range(len(self.input_ranks)): # if self.input_ranks[i] != self.input_ranks[0]: # rank_equal_flag = False # break # if rank_equal_flag == False: # raise ConfigurationError("For layer Add2D, the ranks of each inputs should be equal!") # to check if the dimensions of all the inputs are equal or is 1 dim_flag = True input_dims = list(self.input_dims) for i in range(len(input_dims)): if input_dims[i][1] != input_dims[0][1] and input_dims[i][1] != 1 and input_dims[0][1] != 1: dim_flag = False break if dim_flag == False: raise ConfigurationError("For layer Add2D, the dimensions of each inputs should be equal or 1")
[docs]class Add2D(nn.Module): """ Add2D layer to get sum of two sequences(2D representation) Args: layer_conf (Add2DConf): configuration of a layer """ def __init__(self, layer_conf): super(Add2D, self).__init__() self.layer_conf = layer_conf logging.warning("The length Add2D layer returns is the length of first input")
[docs] def forward(self, *args): """ process input Args: *args: (Tensor): string, string_len, string2, string2_len e.g. string (Tensor): [batch_size, dim], string_len (Tensor): [batch_size] Returns: Tensor: [batch_size, output_dim], [batch_size] """ return torch.add(args[0],args[2]),args[1]