# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import torch
import torch.nn as nn
import logging
from ..BaseLayer import BaseConf,BaseLayer
from utils.DocInherit import DocInherit
from utils.exceptions import ConfigurationError
import copy
[docs]class Concat2DConf(BaseConf):
""" Configuration of Concat2D Layer
Args:
concat2D_axis(int): which axis to conduct concat2D, default is 1.
"""
# init the args
def __init__(self,**kwargs):
super(Concat2DConf, self).__init__(**kwargs)
# set default params
[docs] @DocInherit
def default(self):
self.concat2D_axis = 1
[docs] @DocInherit
def declare(self):
self.num_of_inputs = -1
self.input_ranks = [2]
[docs] @DocInherit
def inference(self):
self.output_dim = copy.deepcopy(self.input_dims[0])
self.output_dim[-1] = 0
self.output_dim[-1] += sum([input_dim[-1] for input_dim in self.input_dims])
super(Concat2DConf, self).inference()
[docs] @DocInherit
def verify(self):
super(Concat2DConf, self).verify()
# to check if the ranks of all the inputs are equal
rank_equal_flag = True
for i in range(len(self.input_ranks)):
if self.input_ranks[i] != self.input_ranks[0]:
rank_equal_flag = False
break
if rank_equal_flag == False:
raise ConfigurationError("For layer Concat2D, the ranks of each inputs should be equal!")
# to check if the concat2D_axis is legal
if self.concat2D_axis != 1:
raise ConfigurationError("For layer Concat2D, the concat axis must be 1!")
[docs]class Concat2D(nn.Module):
""" Concat2D layer to merge sum of sequences(2D representation)
Args:
layer_conf (Concat2DConf): configuration of a layer
"""
def __init__(self, layer_conf):
super(Concat2D, self).__init__()
self.layer_conf = layer_conf
logging.warning("The length Concat2D layer returns is the length of first input")
[docs] def forward(self, *args):
""" process inputs
Args:
*args: (Tensor): string, string_len, string2, string2_len, ...
e.g. string (Tensor): [batch_size, dim], string_len (Tensor): [batch_size]
Returns:
Tensor: [batch_size, output_dim], [batch_size]
"""
result = []
for idx, input in enumerate(args):
if idx % 2 == 0:
result.append(input)
return torch.cat(result,self.layer_conf.concat2D_axis), args[1]