Source code for block_zoo.op.Concat3D

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.

import torch
import torch.nn as nn
import logging

from ..BaseLayer import BaseConf,BaseLayer
from utils.DocInherit import DocInherit
from utils.exceptions import ConfigurationError
import copy

[docs]class Concat3DConf(BaseConf): """ Configuration of Concat3D layer Args: concat3D_axis(1 or 2): which axis to conduct Concat3D, default is 2. """ # init the args def __init__(self,**kwargs): super(Concat3DConf, self).__init__(**kwargs) # set default params
[docs] @DocInherit def default(self): self.concat3D_axis = 2
[docs] @DocInherit def declare(self): self.num_of_inputs = -1 self.input_ranks =[3]
[docs] @DocInherit def inference(self): self.output_dim = copy.deepcopy(self.input_dims[0]) self.output_dim[-1] = 0 self.output_dim[1] = 0 if self.concat3D_axis == 1: self.output_dim[-1] = self.input_dims[0][-1] self.output_dim[1] = sum([input_dim[1] for input_dim in self.input_dims]) if self.concat3D_axis == 2: self.output_dim[-1] = sum([input_dim[-1] for input_dim in self.input_dims]) self.output_dim[1] = self.input_dims[0][1] super(Concat3DConf, self).inference()
[docs] @DocInherit def verify(self): super(Concat3DConf, self).verify() # to check if the ranks of all the inputs are equal rank_equal_flag = True for i in range(len(self.input_ranks)): if self.input_ranks[i] != self.input_ranks[0]: rank_equal_flag = False break if rank_equal_flag == False: raise ConfigurationError("For layer Concat3D, the ranks of each inputs should be equal!") if self.concat3D_axis == 1: # to check if the dimensions of all the inputs are equal input_dims = list(self.input_dims) dim_equal_flag = True for i in range(len(input_dims)): if input_dims[i][-1] != input_dims[0][-1]: dim_equal_flag = False break if dim_equal_flag == False: raise Exception("Concat3D with axis = 1 require that the input dimensions should be the same!") # to check if the concat3D_axis is legal if self.concat3D_axis not in [1, 2]: raise ConfigurationError("For layer Concat3D, the concat axis must be 1 or 2!")
[docs]class Concat3D(nn.Module): """ Concat3D layer to merge sum of sequences(3D representation) Args: layer_conf (Concat3DConf): configuration of a layer """ def __init__(self,layer_conf): super(Concat3D, self).__init__() self.layer_conf = layer_conf logging.warning("The length Concat3D layer returns is the length of first input")
[docs] def forward(self, *args): """ process inputs Args: *args: (Tensor): string, string_len, string2, string2_len, ... e.g. string (Tensor): [batch_size, seq_len, dim], string_len (Tensor): [batch_size] Returns: Tensor: [batch_size, seq_len, output_dim], [batch_size] """ result = [] if self.layer_conf.concat3D_axis == 1: for idx, input in enumerate(args): if idx % 2 == 0: result.append(input) if self.layer_conf.concat3D_axis == 2: input_shape = args[0].shape[1] for idx, input in enumerate(args): if idx % 2 == 0 and input_shape == input.shape[1]: result.append(input) else: raise Exception("Concat3D with axis = 2 require that the input sequences length should be the same!") return torch.cat(result, self.layer_conf.concat3D_axis), args[1]