# Inception model optimization on Qualcomm NPU [inception_snpe_qualcomm_npu](https://github.com/microsoft/Olive/tree/main/examples/snpe/inception_snpe_qualcomm_npu) # Cifar10 optimization with OpenVINO for Intel HW [cifar10_openvino_intel_hw](https://github.com/microsoft/Olive/tree/main/examples/cifar10_openvino_intel_hw) # BERT optimization with QAT Customized Training Loop on CPU [bert_qat_customized_train_loop_cpu](https://github.com/microsoft/Olive/tree/main/examples/quantization_aware_training/bert_qat_customized_train_loop_cpu) # ResNet optimization with QAT Default Training Loop on CPU [resnet_qat_default_train_loop_cpu](https://github.com/microsoft/Olive/tree/main/examples/quantization_aware_training/resnet_qat_default_train_loop_cpu) # ResNet optimization with QAT PyTorch Lightning Module on CPU [resnet_qat_lightning_module_cpu](https://github.com/microsoft/Olive/tree/main/examples/quantization_aware_training/resnet_qat_lightning_module_cpu) # SqueezeNet latency optimization with DirectML [directml/squeezenet](https://github.com/microsoft/Olive/tree/main/examples/directml/squeezenet) # Stable Diffusion optimization with DirectML [directml/stable_diffusion](https://github.com/microsoft/Olive/tree/main/examples/directml/stable_diffusion) # BERT optimization with IntelĀ® Neural Compressor Post Training quantization on CPU [bert_inc_ptq_cpu](https://github.com/microsoft/Olive/tree/main/examples/bert_inc_ptq_cpu) # Whisper optimization using ORT toolchain [whisper](https://github.com/microsoft/Olive/tree/main/examples/whisper)