Source code for olive.systems.azureml.aml_system

# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
import json
import logging
import shutil
import tempfile
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union

from azure.ai.ml import Input, Output, command
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml.dsl import pipeline
from azure.ai.ml.entities import BuildContext, Environment
from azure.core.exceptions import HttpResponseError, ServiceResponseError

from olive.azureml.azureml_client import AzureMLClientConfig
from olive.common.config_utils import validate_config
from olive.common.utils import retry_func
from olive.constants import Framework
from olive.evaluator.metric import Metric, MetricResult
from olive.hardware.accelerator import AcceleratorSpec
from olive.model import ModelConfig, ModelStorageKind, OliveModel, ONNXModel
from olive.passes.olive_pass import Pass
from olive.systems.common import AzureMLDockerConfig, SystemType
from olive.systems.olive_system import OliveSystem

logger = logging.getLogger(__name__)


[docs]class AzureMLSystem(OliveSystem): system_type = SystemType.AzureML def __init__( self, azureml_client_config: AzureMLClientConfig, aml_compute: str, aml_docker_config: Union[Dict[str, Any], AzureMLDockerConfig], instance_count: int = 1, is_dev: bool = False, accelerators: List[str] = None, ): super().__init__(accelerators) self._assert_not_none(aml_docker_config) aml_docker_config = validate_config(aml_docker_config, AzureMLDockerConfig) azureml_client_config = validate_config(azureml_client_config, AzureMLClientConfig) self.azureml_client_config = azureml_client_config self.compute = aml_compute self.environment = self._create_environment(aml_docker_config) self.instance_count = instance_count self.is_dev = is_dev def _create_environment(self, docker_config: AzureMLDockerConfig): if docker_config.build_context_path: return Environment( build=BuildContext(dockerfile_path=docker_config.dockerfile, path=docker_config.build_context_path) ) if docker_config.base_image: return Environment(image=docker_config.base_image, conda_file=docker_config.conda_file_path) raise Exception("Please specify DockerConfig.") def _assert_not_none(self, object): if object is None: raise Exception(f"{object.__class__.__name__} is missing in the inputs!") def run_pass( self, the_pass: Pass, model: OliveModel, output_model_path: str, point: Optional[Dict[str, Any]] = None, ) -> OliveModel: """ Run the pass on the model at a specific point in the search space. """ ml_client = self.azureml_client_config.create_client() point = point or {} config = the_pass.config_at_search_point(point) pass_config = the_pass.to_json(check_objects=True) pass_config["config"].update(the_pass.serialize_config(config, check_objects=True)) with tempfile.TemporaryDirectory() as tempdir: pipeline_job = self._create_pipeline_for_pass(tempdir, model, pass_config, the_pass.path_params) # submit job logger.debug("Submitting pipeline") job = retry_func( ml_client.jobs.create_or_update, [pipeline_job], {"experiment_name": "olive-pass", "tags": {"Pass": pass_config["type"]}}, max_tries=3, delay=5, exceptions=HttpResponseError, ) logger.info(f"Pipeline submitted. Job name: {job.name}. Job link: {job.studio_url}") ml_client.jobs.stream(job.name) # get output output_dir = Path(tempdir) / "pipeline_output" output_dir.mkdir(parents=True, exist_ok=True) logger.debug(f"Downloading pipeline output to {output_dir}") retry_func( ml_client.jobs.download, [job.name], {"output_name": "pipeline_output", "download_path": output_dir}, max_tries=3, delay=5, exceptions=ServiceResponseError, ) pipeline_output_path = output_dir / "named-outputs" / "pipeline_output" return self._load_model(model, output_model_path, pipeline_output_path) def _create_model_inputs(self, model_storage_kind: ModelStorageKind): return { "model_config": Input(type=AssetTypes.URI_FILE), # aml supports uploading file/folder even though model_path is typed as URI_FOLDER "model_path": Input(type=AssetTypes.CUSTOM_MODEL) if model_storage_kind == ModelStorageKind.AzureMLModel else Input(type=AssetTypes.URI_FOLDER, optional=True), "model_script": Input(type=AssetTypes.URI_FILE, optional=True), "model_script_dir": Input(type=AssetTypes.URI_FOLDER, optional=True), } def _create_model_args(self, model_json: dict, tmp_dir: Path): # TODO: consider symlinking model_script and model_script_dir also when we decide # the relationship between the two model_script = None if model_json["config"].get("model_script"): model_script = Input(type=AssetTypes.URI_FILE, path=model_json["config"]["model_script"]) model_json["config"]["model_script"] = None model_script_dir = None if model_json["config"].get("script_dir"): model_script_dir = Input(type=AssetTypes.URI_FOLDER, path=model_json["config"]["script_dir"]) model_json["config"]["script_dir"] = None model_path = None if model_json["config"]["model_storage_kind"] == ModelStorageKind.AzureMLModel: model_path = Input( type=AssetTypes.CUSTOM_MODEL, path=model_json["config"]["model_path"], ) model_json["config"]["model_storage_kind"] = str(ModelStorageKind.LocalFile) model_json["config"]["version"] = None else: if model_json["config"].get("model_path"): original_model_path = Path(model_json["config"]["model_path"]).resolve() if ( model_json["type"].lower() == "onnxmodel" and model_json["config"]["model_storage_kind"] == ModelStorageKind.LocalFolder ): # onnx model with external data # need to upload the parent directory of .onnx file original_model_path = original_model_path.parent # use common name "model" for model_path tmp_model_path = (tmp_dir / "model").with_suffix(original_model_path.suffix) if original_model_path.is_dir(): # copy model directory # symlink doesn't work for directory shutil.copytree(original_model_path, tmp_model_path, symlinks=True) if model_json["type"].lower() == "onnxmodel": # rename .onnx file to model.onnx onnx_model_file = Path(model_json["config"]["model_path"]).resolve().name (tmp_model_path / onnx_model_file).rename(tmp_model_path / "model.onnx") else: # symlink model file tmp_model_path.symlink_to(original_model_path) model_path = Input( type=AssetTypes.URI_FILE if model_json["config"].get("model_storage_kind") == ModelStorageKind.LocalFile else AssetTypes.URI_FOLDER, path=tmp_model_path, ) model_json["config"]["model_path"] = None model_config_path = tmp_dir / "model_config.json" with model_config_path.open("w") as f: json.dump(model_json, f, sort_keys=True) model_config = Input(type=AssetTypes.URI_FILE, path=model_config_path) return { "model_config": model_config, "model_path": model_path, "model_script": model_script, "model_script_dir": model_script_dir, } def _create_pass_inputs(self, pass_path_params: List[Tuple[str, bool]]): inputs = {"pass_config": Input(type=AssetTypes.URI_FILE)} for param, required in pass_path_params: # aml supports uploading file/folder even though this is typed as URI_FOLDER inputs[f"pass_{param}"] = Input(type=AssetTypes.URI_FOLDER, optional=not required) return inputs def _create_pass_args(self, pass_config: dict, pass_path_params: List[Tuple[str, bool]], tmp_dir: Path): pass_args = {} for param, _ in pass_path_params: if pass_config["config"].get(param) is None: continue pass_args[f"pass_{param}"] = Input( type=AssetTypes.URI_FILE if Path(pass_config["config"][param]).is_file() else AssetTypes.URI_FOLDER, path=pass_config["config"][param], ) pass_config["config"][param] = None pass_config_path = tmp_dir / "pass_config.json" with pass_config_path.open("w") as f: json.dump(pass_config, f, sort_keys=True) return {"pass_config": Input(type=AssetTypes.URI_FILE, path=pass_config_path), **pass_args} def _create_step( self, name, display_name, description, aml_environment, code, compute, instance_count, inputs, script_name ): parameters = [] for param, input in inputs.items(): if isinstance(input, Input) and input.optional: parameters.append(f"$[[--{param} ${{{{inputs.{param}}}}}]]") else: parameters.append(f"--{param} ${{{{inputs.{param}}}}}") parameters.append("--pipeline_output ${{outputs.pipeline_output}}") cmd_line = f"python {script_name} {' '.join(parameters)}" component = command( name=name, display_name=display_name, description=description, command=cmd_line, environment=aml_environment, code=code, inputs=inputs, outputs=dict(pipeline_output=Output(type=AssetTypes.URI_FOLDER)), instance_count=instance_count, compute=compute, ) return component def _create_pipeline_for_pass( self, tmp_dir, model: OliveModel, pass_config: dict, pass_path_params: List[Tuple[str, bool]], ): tmp_dir = Path(tmp_dir) # prepare code script_name = "aml_pass_runner.py" cur_dir = Path(__file__).resolve().parent code_file = cur_dir / script_name code_root = tmp_dir / "code" code_root.mkdir(parents=True, exist_ok=True) shutil.copy(str(code_file), str(code_root)) if self.is_dev: logger.warning( "This mode is only enabled for CI pipeline! " + "It will overwrite the Olive package in AML computer with latest code." ) project_folder = cur_dir.parent.parent shutil.copytree(project_folder, code_root / "olive", ignore=shutil.ignore_patterns("__pycache__")) accelerator_info = { "pass_accelerator_type": pass_config["accelerator"]["accelerator_type"], "pass_execution_provider": pass_config["accelerator"]["execution_provider"], } # prepare inputs inputs = { **self._create_model_inputs(model.model_storage_kind), **self._create_pass_inputs(pass_path_params), **accelerator_info, } # pass type pass_type = pass_config["type"] # aml command object cmd = self._create_step( name=pass_type, display_name=pass_type, description=f"Run olive {pass_type} pass", aml_environment=self.environment, code=code_root, compute=self.compute, instance_count=self.instance_count, inputs=inputs, script_name=script_name, ) # model json model_json = model.to_json(check_object=True) # input argument values args = { **self._create_model_args(model_json, tmp_dir), **self._create_pass_args(pass_config, pass_path_params, tmp_dir), **accelerator_info, } @pipeline() def pass_runner_pipeline(): outputs = {} component = cmd(**args) outputs["pipeline_output"] = component.outputs.pipeline_output return outputs pipeline_job = pass_runner_pipeline() return pipeline_job def _load_model(self, input_model, output_model_path, pipeline_output_path): model_json_path = pipeline_output_path / "output_model_config.json" with model_json_path.open("r") as f: model_json = json.load(f) # resolve model path # this is to handle passes like OrtPerfTuning that use the same model file as input same_model_path_as_input = model_json.pop("same_model_path_as_input") model_path = None if same_model_path_as_input: model_path = input_model.model_path model_json["config"].update( { "name": input_model.name, "version": input_model.version, "model_storage_kind": input_model.model_storage_kind, } ) elif model_json["config"]["model_path"] is not None: downloaded_model_path = pipeline_output_path / model_json["config"]["model_path"] if model_json["type"].lower() == "onnxmodel": # onnx model can have external data output_model_path = ONNXModel.resolve_path(output_model_path) if model_json["config"]["model_storage_kind"] == ModelStorageKind.LocalFolder: # has external data # copy the .onnx file along with external data files shutil.copytree(downloaded_model_path.parent, Path(output_model_path).parent, dirs_exist_ok=True) # rename the .onnx file to the output_model_path, the downloaded model has "model.onnx" name (Path(output_model_path).parent / downloaded_model_path.name).rename(output_model_path) else: # no external data # just copy over the .onnx file shutil.copy(downloaded_model_path, output_model_path) else: # handle other model types if Path(output_model_path).suffix != Path(downloaded_model_path).suffix: output_model_path += Path(downloaded_model_path).suffix if downloaded_model_path.is_file(): # model is a file shutil.copy(downloaded_model_path, output_model_path) else: # model is a directory shutil.copytree(downloaded_model_path, output_model_path, dirs_exist_ok=True) model_path = output_model_path model_json["config"]["model_path"] = model_path return ModelConfig(**model_json).create_model() def _create_metric_inputs(self): return { "metric_config": Input(type=AssetTypes.URI_FILE), "metric_user_script": Input(type=AssetTypes.URI_FILE, optional=True), "metric_script_dir": Input(type=AssetTypes.URI_FOLDER, optional=True), "metric_data_dir": Input(type=AssetTypes.URI_FOLDER, optional=True), } def _create_metric_args(self, metric_config: dict, tmp_dir: Path) -> Tuple[List[str], dict]: metric_user_script = metric_config["user_config"]["user_script"] if metric_user_script: metric_user_script = Input(type=AssetTypes.URI_FILE, path=metric_user_script) metric_config["user_config"]["user_script"] = None metric_script_dir = metric_config["user_config"]["script_dir"] if metric_script_dir: metric_script_dir = Input(type=AssetTypes.URI_FOLDER, path=metric_script_dir) metric_config["user_config"]["script_dir"] = None metric_data_dir = metric_config["user_config"]["data_dir"] if metric_data_dir: metric_data_dir = Input(type=AssetTypes.URI_FOLDER, path=metric_data_dir) metric_config["user_config"]["data_dir"] = None metric_config_path = tmp_dir / "metric_config.json" with metric_config_path.open("w") as f: json.dump(metric_config, f, sort_keys=True) metric_config = Input(type=AssetTypes.URI_FILE, path=metric_config_path) return { "metric_config": metric_config, "metric_user_script": metric_user_script, "metric_script_dir": metric_script_dir, "metric_data_dir": metric_data_dir, } def evaluate_model(self, model: OliveModel, metrics: List[Metric], accelerator: AcceleratorSpec) -> MetricResult: if model.framework == Framework.SNPE: raise NotImplementedError("SNPE model does not support azureml evaluation") if model.framework == Framework.OPENVINO: raise NotImplementedError("OpenVINO model does not support azureml evaluation") with tempfile.TemporaryDirectory() as tempdir: ml_client = self.azureml_client_config.create_client() pipeline_job = self._create_pipeline_for_evaluation(tempdir, model, metrics, accelerator) # submit job logger.debug("Submitting pipeline") job = retry_func( ml_client.jobs.create_or_update, [pipeline_job], {"experiment_name": "olive-evaluation"}, max_tries=3, delay=5, exceptions=HttpResponseError, ) logger.info(f"Pipeline submitted. Job name: {job.name}. Job link: {job.studio_url}") ml_client.jobs.stream(job.name) # get output output_dir = Path(tempdir) / "pipeline_output" output_dir.mkdir(parents=True, exist_ok=True) retry_func( ml_client.jobs.download, [job.name], {"download_path": output_dir, "all": True}, max_tries=3, delay=5, exceptions=ServiceResponseError, ) metric_results = {} for metric in metrics: metric_json = output_dir / "named-outputs" / metric.name / "metric_result.json" if metric_json.is_file(): with metric_json.open() as f: metric_results.update(json.load(f)) return MetricResult.parse_obj(metric_results) def _create_pipeline_for_evaluation( self, tmp_dir: str, model: OliveModel, metrics: List[Metric], accelerator: AcceleratorSpec ): tmp_dir = Path(tmp_dir) # model json model_json = model.to_json(check_object=True) # model args model_args = self._create_model_args(model_json, tmp_dir) accelerator_config_path: Path = tmp_dir / "accelerator.json" with accelerator_config_path.open("w") as f: json.dump(accelerator.to_json(), f, sort_keys=True) @pipeline def evaluate_pipeline(): outputs = {} for metric in metrics: metric_tmp_dir = tmp_dir / metric.name metric_component = self._create_metric_component( metric_tmp_dir, metric, model_args, model.model_storage_kind, accelerator_config_path ) outputs[metric.name] = metric_component.outputs.pipeline_output return outputs pipeline_job = evaluate_pipeline() pipeline_job.settings.default_compute = self.compute return pipeline_job def _create_metric_component( self, tmp_dir: Path, metric: Metric, model_args: Dict[str, Input], model_storage_kind: ModelStorageKind, accelerator_config_path: str, ): metric_json = metric.to_json(check_objects=True) # prepare code script_name = "aml_evaluation_runner.py" cur_dir = Path(__file__).resolve().parent code_file = cur_dir / script_name code_root = tmp_dir / "code" code_root.mkdir(parents=True, exist_ok=True) shutil.copy(str(code_file), str(code_root)) if self.is_dev: logger.warning( "This mode is only enabled for CI pipeline! " + "It will overwrite the Olive package in AML computer with latest code." ) project_folder = cur_dir.parent.parent shutil.copytree(project_folder, code_root / "olive", ignore=shutil.ignore_patterns("__pycache__")) # prepare inputs inputs = { **self._create_model_inputs(model_storage_kind), **self._create_metric_inputs(), **{"accelerator_config": Input(type=AssetTypes.URI_FILE)}, } # metric type metric_type = metric_json["type"] if metric_json["sub_types"] is not None: sub_type_name = ",".join([st["name"] for st in metric_json["sub_types"]]) metric_type = f"{metric_type}-{sub_type_name}" # aml command object cmd = self._create_step( name=metric_type, display_name=metric_type, description=f"Run olive {metric_type} evaluation", aml_environment=self.environment, code=code_root, compute=self.compute, instance_count=self.instance_count, inputs=inputs, script_name=script_name, ) # input argument values args = { **model_args, **self._create_metric_args(metric_json, tmp_dir), **{"accelerator_config": Input(type=AssetTypes.URI_FILE, path=accelerator_config_path)}, } # metric component metric_component = cmd(**args) return metric_component