# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
from pathlib import Path
from typing import Callable, List, Union
from pydantic import validator
from olive.common.config_utils import ConfigBase, ConfigParam, ParamCategory, create_config_class
from olive.resource_path import OLIVE_RESOURCE_ANNOTATIONS
WARMUP_NUM = 10
REPEAT_TEST_NUM = 20
SLEEP_NUM = 0
user_path_config = ["data_dir"]
_common_user_config = {
"script_dir": ConfigParam(type_=Union[Path, str]),
"user_script": ConfigParam(type_=Union[Path, str]),
"inference_settings": ConfigParam(type_=dict),
"data_dir": ConfigParam(type_=OLIVE_RESOURCE_ANNOTATIONS, category=ParamCategory.DATA),
"dataloader_func": ConfigParam(type_=Union[Callable, str], category=ParamCategory.OBJECT),
"batch_size": ConfigParam(type_=int, default_value=1),
"input_names": ConfigParam(type_=List),
"input_shapes": ConfigParam(type_=List),
"input_types": ConfigParam(type_=List),
}
_common_user_config_validators = {}
_type_to_user_config = {
"latency": {
"io_bind": ConfigParam(type_=bool, default_value=False),
},
"accuracy": {
"post_processing_func": ConfigParam(type_=Union[Callable, str], category=ParamCategory.OBJECT),
},
"custom": {
"evaluate_func": ConfigParam(type_=Union[Callable, str], required=False, category=ParamCategory.OBJECT),
"metric_func": ConfigParam(type_=Union[Callable, str], required=False, category=ParamCategory.OBJECT),
},
}
_type_to_user_config_validators = {}
def get_user_config_class(metric_type: str):
default_config = _common_user_config.copy()
default_config.update(_type_to_user_config[metric_type])
validators = _common_user_config_validators.copy()
validators.update(_type_to_user_config_validators.get(metric_type, {}))
return create_config_class(f"{metric_type.title()}UserConfig", default_config, ConfigBase, validators)
def get_user_config_properties_from_metric_type(metric_type):
user_config_class = get_user_config_class(metric_type)
# avoid to use schema() to get the fields, because it will skip the ones with object type
return list(user_config_class.__fields__)
# TODO(jambayk): automate latency metric config also we standardize accuracy metric config
class LatencyMetricConfig(ConfigBase):
warmup_num: int = WARMUP_NUM
repeat_test_num: int = REPEAT_TEST_NUM
sleep_num: int = SLEEP_NUM
[docs]class MetricGoal(ConfigBase):
type: str # threshold , deviation, percent-deviation, # noqa: A003
value: float
@validator("type")
def check_type(cls, v):
allowed_types = [
"threshold",
"min-improvement",
"percent-min-improvement",
"max-degradation",
"percent-max-degradation",
]
if v not in allowed_types:
raise ValueError(f"Metric goal type must be one of {allowed_types}")
return v
@validator("value")
def check_value(cls, v, values):
if "type" not in values:
raise ValueError("Invalid type")
if values["type"] in ["min-improvement", "max-degradation"] and v < 0:
raise ValueError(f"Value must be positive for type {values['type']}")
return v