Complete Reference
This page contains what should be a complete list of all docstrings in the OpticSim module, and its submodule.
Index
OpticSim.ChebyshevOpticSim.ExamplesOpticSim.QTypeOpticSim.ZernikeOpticSim.AsphericSurfaceTypeOpticSim.BSplineCurveOpticSim.BeamStateOpticSim.BezierCurveOpticSim.CircularStopShapeOpticSim.ConvexPolygonOpticSim.CurveTypeOpticSim.GeometricRayGeneratorOpticSim.Geometry.TransformOpticSim.Geometry.TransformOpticSim.Geometry.TransformOpticSim.Geometry.TransformOpticSim.Geometry.TransformOpticSim.Geometry.TransformOpticSim.Geometry.Vec4OpticSim.Geometry.Vec4OpticSim.GridSagInterpolationOpticSim.InterfaceModeOpticSim.KnotVectorOpticSim.OpticalRayOpticSim.OpticalRayGeneratorOpticSim.PlanarShapeOpticSim.PrimitiveOpticSim.RayOpticSim.RectangularStopShapeOpticSim.SphericalPolygonOpticSim.SplineOpticSim.SplineSurfaceOpticSim.StopSurfaceOpticSim.ZernikeIndexTypeBase.:*Base.:*Base.:*Base.:*Base.:*Base.:*Base.:*OpticSim.AnnulusOpticSim.AsphericLensOpticSim.BoundedCylinderOpticSim.Chebyshev.TOpticSim.Chebyshev.UOpticSim.Chebyshev.dTdqOpticSim.CircleOpticSim.CircularApertureOpticSim.CircularApertureOpticSim.ConicLensOpticSim.CuboidOpticSim.EvenAsphericSurfaceOpticSim.Examples.ArizonaEyeOpticSim.Examples.ModelEyeOpticSim.Examples.drawhex12RGBOpticSim.Examples.drawhex3RGBOpticSim.Examples.drawhexneighborsOpticSim.Examples.drawhexrectOpticSim.Examples.drawhexrectcolorsOpticSim.Examples.drawhexregionOpticSim.Examples.eyetrackHOEOpticSim.Examples.hemisphereOpticSim.Examples.hex3clusterOpticSim.Examples.hexRGBWOpticSim.Examples.opticalhemisphereOpticSim.Examples.prism_refractionOpticSim.FresnelLensOpticSim.Geometry.decomposeRTSOpticSim.Geometry.forwardOpticSim.Geometry.identitytransformOpticSim.Geometry.local2worldOpticSim.Geometry.rightOpticSim.Geometry.rotateOpticSim.Geometry.rotationOpticSim.Geometry.rotationOpticSim.Geometry.rotationXOpticSim.Geometry.rotationYOpticSim.Geometry.rotationZOpticSim.Geometry.rotationdOpticSim.Geometry.rotmatOpticSim.Geometry.rotmatbetweenOpticSim.Geometry.rotmatdOpticSim.Geometry.scaleOpticSim.Geometry.scaleOpticSim.Geometry.scaleOpticSim.Geometry.translationOpticSim.Geometry.translationOpticSim.Geometry.unitW4OpticSim.Geometry.unitX3OpticSim.Geometry.unitX4OpticSim.Geometry.unitY3OpticSim.Geometry.unitY4OpticSim.Geometry.unitZ3OpticSim.Geometry.unitZ4OpticSim.Geometry.upOpticSim.Geometry.world2localOpticSim.HexagonalPrismOpticSim.OddAsphericSurfaceOpticSim.OddEvenAsphericSurfaceOpticSim.QType.SOpticSim.QType.S0OpticSim.QType.dS0dxOpticSim.QType.dSdxOpticSim.RectangularApertureOpticSim.RectangularApertureOpticSim.RectangularPrismOpticSim.SphericalLensOpticSim.SpiderOpticSim.TriangularPrismOpticSim.Zernike.NolltoNMOpticSim.Zernike.OSAtoNMOpticSim.Zernike.ROpticSim.Zernike.normalisationOpticSim.Zernike.δζOpticSim.Zernike.ζOpticSim.areaOpticSim.asphericTypeOpticSim.assemblyOpticSim.closestintersectionOpticSim.closestpointonrayOpticSim.curvedimensionOpticSim.curveorderOpticSim.detectorimageOpticSim.distanceOpticSim.distancefromplaneOpticSim.doesintersectOpticSim.evalcsgOpticSim.evaluatecurveOpticSim.extractmovinglinesOpticSim.fresnelOpticSim.halfspaceintersectionOpticSim.interfaceOpticSim.intersectionsOpticSim.isemptyintervalOpticSim.isinfinityOpticSim.ispositivehalfspaceOpticSim.israyoriginOpticSim.israyoriginintervalOpticSim.jacobianOpticSim.leafOpticSim.linedimensionOpticSim.makemeshOpticSim.makemeshOpticSim.matricesforeigenOpticSim.newtonOpticSim.normalOpticSim.numberoflinesOpticSim.originOpticSim.orthogonalitymatrixOpticSim.planeOpticSim.plane_from_pointsOpticSim.pointOpticSim.pointOpticSim.pointOpticSim.pointOpticSim.pressureOpticSim.processintersectionOpticSim.quadraticrootsOpticSim.reset!OpticSim.resetdetector!OpticSim.reversenormalOpticSim.samplesurfaceOpticSim.semidiameterOpticSim.snellOpticSim.sphericalangleOpticSim.sphericalcircleOpticSim.sum!OpticSim.surfaceintersectionOpticSim.temperatureOpticSim.traceOpticSim.traceOpticSim.traceOpticSim.traceMTOpticSim.tracehitsOpticSim.tracehitsMTOpticSim.transformOpticSim.triangulateOpticSim.triangulatedintersectionOpticSim.uvOpticSim.uvrangeOpticSim.uvtopixOpticSim.verticesOpticSim.verticesOpticSim.verticesOpticSim.vertices3dOpticSim.vertices3dOpticSim.virtualdistanceOpticSim.virtualpointOpticSim.α
OpticSim
OpticSim.AsphericSurfaceType — TypeAphericSurfaces polynomial evaluation is optimized for no terms CONIC, odd terms ODD, even terms EVEN or any ODDEVEN
OpticSim.BSplineCurve — TypeBSplineCurve{P,S,N,M} <: Spline{P,S,N,M}N is the spatial dimension of the curve. M is the curve order, i.e., the highest power of the parameterizing variable, u. All curve segments are assumed to be of the same order.
BSplineCurve{P,S,N,M}(knots::KnotVector{S}, controlpoints::AbstractArray{MVector{N,S},1})OpticSim.BeamState — TypeConvergingBeam, DivergingBeam or CollimatedBeam, defines the behavior of a beam in a HologramInterface.
OpticSim.BezierCurve — TypeBezierCurve{P,S,N,M} <: Spline{P,S,N,M}N is the dimension of the curve, M is the curve order
BezierCurve{P,S,N,M}(controlpoints::AbstractArray{<:AbstractArray{S,1},1})OpticSim.CircularStopShape — TypeCircularStopShape <: StopShapeOpticSim.ConvexPolygon — TypeConvexPolygon{N, T<:Real} <: PlanarShape{T}General Convex Polygon surface, not a valid CSG object. The rotation of the polygon around its normal is defined by rotationvec. rotationvec×surfacenormal is taken as the vector along the u axis.
ConvexPolygon(local_frame::Transform{T}, local_polygon_points::Vector{SVector{2, T}}, interface::NullOrFresnel{T} = nullinterface(T))The local frame defines the plane (spans by the right and up vectors) with the plane normal given by the forward vector. the localpolygonpoints are given with respect to the local frame and are 2D points. NOTE: This class uses static vectors to hold the points which will lead to more efficient performance, but should not be used with polygons with more than 20-30 points.
OpticSim.CurveType — TypeEither Rational or Euclidean, used for Splines and SplineSurfaces.
OpticSim.GeometricRayGenerator — TypeGeometricRayGenerator{T,O<:RayOriginGenerator{T}} <: AbstractRayGenerator{T}Generates geometric Rays according to the specific implementation of the subclass.
OpticSim.GridSagInterpolation — TypeEither GridSagLinear or GridSagBicubic - determines the interpolation between sample points in the grid for a GridSagSurface.
OpticSim.InterfaceMode — TypeValid modes for deterministic raytracing
OpticSim.KnotVector — TypeKnotVector{T<:Number}Vector to define knots used for BSplineCurve and BSplineSurface.
OpticSim.OpticalRay — TypeOpticalRay{T,N} <: AbstractRay{T,N}Ray with power, wavelength and optical path length.
NOTE: we use monte carlo integration to get accurate results on the detector, this means that all rays essentially hit the detector with power = 1 and some rays are thrown away at any interface to correctly match the reflection/transmission at that interface. For inspection purposes we also track the 'instantaneous' power of the ray in the power field of the OpticalRay.
OpticalRay(ray::Ray{T,N}, power::T, wavelength::T, opl=zero(T))
OpticalRay(origin::SVector{N,T}, direction::SVector{N,T}, power::T, wavelength::T, opl=zero(T))Has the following accessor methods:
ray(r::OpticalRay{T,N}) -> Ray{T,N}
direction(r::OpticalRay{T,N}) -> SVector{N,T}
origin(r::OpticalRay{T,N}) -> SVector{N,T}
power(r::OpticalRay{T,N}) -> T
wavelength(r::OpticalRay{T,N}) -> T
pathlength(r::OpticalRay{T,N}) -> T
sourcepower(r::OpticalRay{T,N}) -> T
nhits(r::OpticalRay{T,N}) -> Int
sourcenum(r::OpticalRay{T,N}) -> IntOpticSim.OpticalRayGenerator — TypeOpticalRayGenerator{T} <: AbstractRayGenerator{T}Generates OpticalRays according to the specific implementation of the subclass.
OpticSim.PlanarShape — TypeThe PlanarShape interface:
distancefromplane(p::PlanarShape,point) returns distance of the point from the plane the planar shape lies within normal(p::PlanarShape) returns normal of plane interface(p::PlanarShape) returns optical interface of plane vertices(p::PlanarShape) returns vertices of shape. For Ellipse this is an approximation.
There are default functions for plane,normal,interface,vertices which assume each PlanarShape type has a field of the same name plane(a::PlanarShape) = a.plane normal(a::PlanaShape) = a.plane.normal etc.
If your type doesn't have these fields then you should define a more specialized method to handle this.
OpticSim.Primitive — TypePrimitive{T<:Real}T is the number type used to represent the primitive, e.g., Float64. Primitives are the basic elements which can be stored in bounding volume hierarchies and include surfaces and CSG objects
Must implement the following:
boundingbox(a::Primitive{T})::BoundingBox{T}
centroid(a::Primitive{T})::SVector{3,T}OpticSim.Ray — TypeRay{T,N} <: AbstractRay{T,N}Purely geometric ray, defined as origin + alpha * direction.
Ray(origin::SVector{N,T}, direction::SVector{N,T})Has the following accessor methods:
direction(ray::Ray{T,N}) -> SVector{N,T}
origin(ray::Ray{T,N}) -> SVector{N,T}OpticSim.RectangularStopShape — TypeRectangularStopShape <: StopShapeOpticSim.SphericalPolygon — TypeSphericalPolygon uses StaticArrays to represent vertices. Expect performance degradation for polygons with large numbers of vertices. Performance appears to be good up to perhaps 100 vertices, perhaps as much as 1000 vertices. By 10,000 vertices performance is terrible.
OpticSim.Spline — TypeSpline{P<:CurveType,S<:Number,N,M}M is the curve order, i.e., the highest power of the parameterizing variable, u. P determines the CurveType.
All Spline types must implement:
point(curve,u)and have field controlpolygon
OpticSim.SplineSurface — TypeSplineSurface{P,S,N,M} <: ParametricSurface{S,N}Curve order, M, is the same in the u and v direction and fixed over all spans. P determines the CurveType.
OpticSim.StopSurface — TypeStopSurface{T} <: Surface{T}Abstract type to encapsulate any surfaces acting as a stop.
OpticSim.ZernikeIndexType — TypeEither ZernikeIndexingOSA or ZernikeIndexingNoll, see Zernike polynomials wikipedia entry for details.
Base.:* — MethodApply a Transform to an Intersection object
Base.:* — MethodApply a Transform to an Interval object
Base.:* — MethodApply a Transform to a Ray object
Base.:* — MethodApply a Transform to a TriangleMesh object
Base.:* — MethodApply a Transform to a Triangle object
OpticSim.Annulus — MethodAnnulus(innerradius::T, outerradius::T, surfacenormal::SVector{3,T}, centrepoint::SVector{3,T})Creates a circular aperture in a circle i.e. FiniteStop{T,CircularStopShape,CircularStopShape}.
OpticSim.AsphericLens — MethodAsphericLens(insidematerial, frontvertex, frontradius, frontconic, frontaspherics, backradius, backconic, backaspherics, thickness, semidiameter; lastmaterial = OpticSim.GlassCat.Air, nextmaterial = OpticSim.GlassCat.Air, frontsurfacereflectance = 0.0, backsurfacereflectance = 0.0, frontdecenter = (0, 0), backdecenter = (0, 0), interfacemode = ReflectOrTransmit)Cosntructs a simple cylindrical lens with front and back surfaces with a radius, conic and apsheric terms. The side walls of the lens are absorbing.
OpticSim.BoundedCylinder — MethodBoundedCylinder(radius::T, height::T; interface::NullOrFresnel{T} = nullinterface(T)) -> CSGGenerator{T}Create a cylinder with planar caps on both ends centred at (0, 0, 0) with axis (0, 0, 1).
OpticSim.Circle — MethodCircle(radius, [surfacenormal, centrepoint]; interface = nullinterface(T))Shortcut method to create a circle. The minimal case returns a circle centred at the origin with normal = [0, 0, 1].
OpticSim.CircularAperture — MethodCircularAperture(radius::T, surfacenormal::SVector{3,T}, centrepoint::SVector{3,T})Creates a circular aperture in a plane i.e. InfiniteStop{T,CircularStopShape}.
OpticSim.CircularAperture — MethodCircularAperture(radius::T, outerhalfsizeu::T, outerhalfsizev::T, surfacenormal::SVector{3,T}, centrepoint::SVector{3,T}; rotationvec::SVector{3,T} = [0.0, 1.0, 0.0])Creates a circular aperture in a rectangle i.e. FiniteStop{T,CircularStopShape,RectangularStopShape}. The rotation of the rectangle around its normal is defined by rotationvec. rotationvec×surfacenormal is taken as the vector along the u axis.
OpticSim.ConicLens — MethodConicLens(insidematerial, frontvertex, frontradius, frontconic, backradius, backconic, thickness, semidiameter; lastmaterial = OpticSim.GlassCat.Air, nextmaterial = OpticSim.GlassCat.Air, frontsurfacereflectance = 0.0, backsurfacereflectance = 0.0, frontdecenter = (0, 0), backdecenter = (0, 0), interfacemode = ReflectOrTransmit)Constructs a simple cylindrical lens with front and back surfaces with a radius and conic term. The side walls of the lens are absorbing.
OpticSim.Cuboid — MethodCuboid(halfsizex::T, halfsizey::T, halfsizez::T; interface::NullOrFresnel{T} = nullinterface(T)) -> CSGGenerator{T}Create a cuboid centred at (0, 0, 0).
OpticSim.EvenAsphericSurface — MethodEvenAsphericSurface(semidiameter, curvature::T, conic::T, aspherics::Vector{T}; normradius::T=semidiameter)Surface incorporating an aspheric polynomial - radius, conic and aspherics are defined relative to absolute semi-diameter.
aspherics should be an array of the even coefficients of the aspheric polynomial starting with A2
OpticSim.FresnelLens — MethodFresnelLens(insidematerial, frontvertex, radius, thickness, semidiameter, groovedepth; conic = 0.0, aspherics = nothing, outsidematerial = OpticSim.GlassCat.Air)Create a Fresnel lens as a CSG object, can be concave or convex. Groove positions are found iteratively based on groovedepth. For negative radii the vertex on the central surface is at frontvertex, so the total thickness of the lens is thickness + groovedepth. Aspherics currently not supported.
OpticSim.HexagonalPrism — MethodHexagonalPrism(side_length::T, visheight::T = 2.0; interface::NullOrFresnel{T} = nullinterface(T)) -> CSGGenerator{T}Create an infinitely tall hexagonal prism with axis (0, 0, 1), the longer hexagon diameter is along the x axis. For visualization visheight is used, note that this does not fully represent the surface.
OpticSim.OddAsphericSurface — MethodOddAsphericSurface(semidiameter, curvature::T, conic::T, aspherics::Vector{T}; normradius::T=semidiameter)Surface incorporating an aspheric polynomial - radius, conic and aspherics are defined relative to absolute semi-diameter.
aspherics should be an array of the odd coefficients of the aspheric polynomial starting with A1
OpticSim.OddEvenAsphericSurface — MethodOddEvenAsphericSurface(semidiameter, curvature::T, conic::T, aspherics::Vector{T}; normradius::T=semidiameter)Surface incorporating an aspheric polynomial - radius, conic and aspherics are defined relative to absolute semi-diameter.
aspherics should be an array of the both odd and even coefficients of the aspheric polynomial starting with A1
OpticSim.RectangularAperture — MethodRectangularAperture(aphalfsizeu::T, aphalfsizev::T, surfacenormal::SVector{3,T}, centrepoint::SVector{3,T}; rotationvec::SVector{3,T} = [0.0, 1.0, 0.0])Creates a rectangular aperture in a plane i.e. InfiniteStop{T,RectangularStopShape}. The rotation of the rectangle around its normal is defined by rotationvec. rotationvec×surfacenormal is taken as the vector along the u axis.
OpticSim.RectangularAperture — MethodRectangularAperture(innerhalfsizeu::T, innerhalfsizev::T, outerhalfsizeu::T, outerhalfsizev::T, surfacenormal::SVector{3,T}, centrepoint::SVector{3,T}; rotationvec::SVector{3,T} = [0.0, 1.0, 0.0])Creates a rectangular aperture in a rectangle i.e. FiniteStop{T,RectangularStopShape,RectangularStopShape}. The rotation of the rectangle around its normal is defined by rotationvec. rotationvec×surfacenormal is taken as the vector along the u axis.
OpticSim.RectangularPrism — MethodRectangularPrism(halfsizex::T, halfsizey::T, visheight::T=2.0; interface::NullOrFresnel{T} = nullinterface(T)) -> CSGGenerator{T}Create an infinitely tall rectangular prism with axis (0, 0, 1). For visualization visheight is used, note that this does not fully represent the surface.
OpticSim.SphericalLens — MethodSphericalLens(insidematerial, frontvertex, frontradius, backradius, thickness, semidiameter; lastmaterial = OpticSim.GlassCat.Air, nextmaterial = OpticSim.GlassCat.Air, frontsurfacereflectance = 0.0, backsurfacereflectance = 0.0, frontdecenter = (0, 0), backdecenter = (0, 0), interfacemode = ReflectOrTransmit)Constructs a simple cylindrical lens with spherical front and back surfaces. The side walls of the lens are absorbing.
OpticSim.Spider — MethodSpider(narms::Int, armwidth::T, radius::T, origin::SVector{3,T} = SVector{3,T}(0.0, 0.0, 0.0), normal::SVector{3,T} = SVector{3,T}(0.0, 0.0, 1.0)) -> Vector{Rectangle{T}}Creates a 'spider' obscuration with narms rectangular arms evenly spaced around a circle defined by origin and normal. Each arm is a rectangle armwidth×radius.
e.g. for 3 and 4 arms we get:
| _|_
/ \ |OpticSim.TriangularPrism — MethodTriangularPrism(side_length::T, visheight::T = 2.0; interface::NullOrFresnel{T} = nullinterface(T)) -> CSGGenerator{T}Create an infinitely tall triangular prism with axis (0, 0, 1). For visualization visheight is used, note that this does not fully represent the surface.
OpticSim.area — MethodConceptually breaks the convex spherical polygon into spherical triangles and computes the sum of the angles of all the triangles. The sum of all the angles around the centroid is 2π. Have to subtract π for each of the N triangles. Rather than compute the angles of triangles formed by taking edges from the centroid to each vertex, can instead just compute the internal angle of neighboring edges. Total polygon area is 2π -Nπ + ∑(interior angles).
OpticSim.asphericType — MethodasphericType(surf::AsphericSurface)Query the polynomial type of `asp. Returns CONIC, ODD, EVEN, or ODDEVEN. CONIC corresponds to no aspheric terms, ODD means it only has odd aspheric terms, EVEN means only even aspheric terms and ODDEVEN means both even and odd terms.
This function is to enable proper interpretation of surf.aspherics by any optimization routines that directly query the aspheric coefficients.
OpticSim.assembly — Methodassembly(system::AbstractOpticalSystem{T}) -> LensAssembly{T}Get the LensAssembly of system.
OpticSim.closestintersection — Functionclosestintersection(a::Union{EmptyInterval{T},Interval{T},DisjointUnion{T}}, ignorenull::Bool = true) -> Union{Nothing,Intersection{T,3}}Returns the closest Intersection from an Interval or DisjointUnion. Ignores intersection with null interfaces if ignorenull is true. Will return nothing if there is no valid intersection.
OpticSim.closestpointonray — Methodclosestpointonray(r::Ray{T,N}, point::SVector{N,T}) -> SVector{T,NReturns the point on the ray closest to point.
OpticSim.curvedimension — Methodspatial dimension of curve represented as an array of coefficients x[i] = ∑Bj(θ)*x[i,j] where Bj(θ) is the curve basis
OpticSim.curveorder — Methodhighest polynomial power of the curve represented as an array of coefficients x[i] = ∑Bj(θ)*x[i,j] where Bj(θ) is the curve basis
OpticSim.detectorimage — Methoddetectorimage(system::AbstractOpticalSystem{T}) -> HierarchicalImage{D}Get the detector image of system. D is the datatype of the detector image and is not necessarily the same as the datatype of the system T.
OpticSim.distance — Methoddistance(r::Ray{T,N}, point::SVector{N,T}) -> Union{Nothing,T}Returns distance to the position on the ray closest to point. If t < 0 returns nothing.
OpticSim.distancefromplane — MethodAll planar shapes lie on a plane. This function computes the distance from a point to that plane. This is a signed distance. If the point is on the positive side of the plane (the side the normal points toward) the distance will be positive, otherwise negative or 0 if the point lies in the plane.
OpticSim.doesintersect — Methoddoesintersect(bbox::BoundingBox{T}, r::AbstractRay{T,3}) -> BoolTests whether r intersects an axis-aligned BoundingBox, bbox.
OpticSim.evalcsg — Functionevalcsg(
a::Union{UnionNode{T},IntersectionNode{T},ComplementNode{T},LeafNode{T}},
ray::AbstractRay{T,N},
normalreverse::Bool = false
)::Union{EmptyInterval{T},DisjointUnion{T},Interval{T}}[TODO]
OpticSim.evaluatecurve — MethodEvaluates a curve defined in the power basis. Curves and moving lines accessed like this: [xi,ci] where xi is the dimension index, and ci is the coefficient index.
OpticSim.extractmovinglines — Methodreturns 3D array indexed like this: x[line curve order,spatial dimension, line number]`
OpticSim.fresnel — Methodfresnel(nᵢ::T, nₜ::T, sinθᵢ::T, sinθₜ::T) -> Tuple{T,T}Returns reflectance and tranmission power coefficients according to the Fresnel equations. For geometric ray tracing this coefficient can be used directly to compute intensity on the detector plane. For Huygens phase optics need to take the square root to compute the amplitude. The power of the transmitted and refracted rays may not sum to one because of the area correction applied to the transmitted component. The intensity per area can increase or decrease depending on the indices of refraction.
nᵢ is the RI of the material which the incident ray travels in, nₜ is the RI of the material the transmitted ray travels in. sinθᵢ and sinθₜ are the sin of the angles of incidence and transmission respectively.
OpticSim.halfspaceintersection — Methodhalfspaceintersection(a::Interval{T}) -> Intersection{T,3}Returns the Intersection from a half space Interval, throws an error if not a half space.
OpticSim.interface — Methodinterface(surf::Surface{T}) -> OpticalInterface{T}Return the OpticalInterface associated with surf.
OpticSim.intersections — Methodreturns an array of intersection points. Each element in the array is ([x,y,...],alpha,theta) where [x,y,...] is the n-dimensional intersection point, alpha is the line parameter value at the intersection point, and theta is the curve parameter value at the intersection point
OpticSim.isemptyinterval — Methodisemptyinterval(a) -> BoolReturns true if a is an EmptyInterval. In performance critical contexts use a isa EmptyInterval{T}.
OpticSim.isinfinity — Methodisinfinity(a) -> BoolReturns true if a is Infinity. In performance critical contexts use a isa Infinity{T}.
OpticSim.ispositivehalfspace — Methodispositivehalfspace(a) -> BoolReturns true if upper(a) is Infinity. In performance critical contexts check directly i.e. upper(a) isa Infinity{T}.
OpticSim.israyorigin — Methodisrayorigin(a) -> BoolReturns true if a is RayOrigin. In performance critical contexts use a isa RayOrigin{T}.
OpticSim.israyorigininterval — Methodisrayorigininterval(a) -> BoolReturns true if lower(a) is RayOrigin. In performance critical contexts check directly i.e. lower(a) isa RayOrigin{T}.
OpticSim.jacobian — Methodjacobian(surf::ParametricSurface{T,N}, u::T, v::T, P1::SVector{M,T}, P2::SVector{M,T})Computes Jacobian of f(t,u,v) = ( dot(P1,[surf(u,v),1],P2,[surf(u,v),1]) ). P1, P2 are orthogonal planes that pass through the ray. J = [ ∂f1/∂u ∂f1/∂v ; ∂f2/∂u ∂f2/∂v]
OpticSim.leaf — Methodleaf(surf::ParametricSurface{T}, transform::Transform{T} = identitytransform(T)) -> CSGGenerator{T}Create a leaf node from a parametric surface with a given transform.
OpticSim.linedimension — Methodspatial dimension of the moving line represented as an array of coefficients g[i] = ∑Bl(θ)*gl[i,j] where Bl(θ) is the polynomial basis
OpticSim.makemesh — Methodmakemesh(poly::ConvexPolygon{N, T}, ::Int = 0) where {N, T<:Real} -> TriangleMeshCreate a triangle mesh that can be rendered by iterating on the polygon's edges and for each edge use the centroid as the third vertex of the triangle.
OpticSim.makemesh — Methodmakemesh(object, subdivisions::Int = 30) -> TriangleMeshCreates a TriangleMesh from an object, either a ParametricSurface, CSGTree or certain surfaces (e.g. Circle, Rectangle). This is used for visualization purposes only.
OpticSim.matricesforeigen — Methodmovinglines[:,i] is the ith moving line. For li = movinglines[:,i] (dimension+1,lineorder) = size(li). rline[:,1] = pt1 and rline[:,2] = pt2. The line equation is pt1 + alpha*pt2.
OpticSim.newton — Methodnewton(surf::ParametricSurface{T,N}, r::AbstractRay{T,N}, startingpoint::SVector{2,T})Newton iteration to find the precise intersection of a parametric surface with a ray given a starting point (in uv space) on the surface.
OpticSim.normal — Methodnormal(surf::ParametricSurface{T}, u::T, v::T) -> SVector{3,T}
normal(surf::ParametricSurface{T}, uv::SVector{2,T}) -> SVector{3,T}Returns the normal to surf at the given uv coordinate.
OpticSim.numberoflines — Methodnumber of lines in moving line array
OpticSim.orthogonalitymatrix — Methodreturns a matrix expressing the relationship [x(θ) 1]⋅g(θ) = 0. The vectors in the right nullspace of this matrix contain the coefficients of the moving lines gᵢ(θ).
OpticSim.plane — MethodAll paraxial lens surfaces are planar
OpticSim.plane_from_points — Methodplane_from_points(points::SMatrix{D, N, P}}) -> centroid, normal, local_to_world transformPoints to be fitted are assumed to be stored by column in the points matrix. Estimate the best fitting plane for a set of points in 3D. D is the dimension of the plane. N is the number of points to fit. P is the number type used to represent points.
OpticSim.point — MethodThis will return (Inf,Inf,Inf) if the point is at infinity. In this case you probably should be using the direction of the VirtualPoint rather than its position
OpticSim.point — Methodpoint(ray::AbstractRay{T,N}, alpha::T) -> SVector{T, N}Returns a point on the ray at origin + alpha * direction. Alpha must be >= 0.
OpticSim.point — Methodreturns a 3D point. This takes into account the offset of centerpoint and the rotation vector used to construct the Rectangle. u and v are scaled by the size of the rectangle so that u=0,v=0 is one corner and u=v=1 is the diagonal corner. This function should go away once we have a sensible object transform hierarchy system.
OpticSim.point — Methodreturns a 3D point in the plane of the rectangle. This takes into account the offset of centerpoint and the rotation vector used to construct the Rectangle. u and v are scaled by the size of the rectangle so that u=0,v=0 is one corner and u=v=1 is the diagonal corner. This function should go away once we have a sensible object transform hierarchy system.
OpticSim.pressure — Methodpressure(system::AbstractOpticalSystem{T}) -> TGet the pressure of system in Atm.
OpticSim.processintersection — Methodprocessintersection(opticalinterface::OpticalInterface{T}, point::SVector{N,T}, normal::SVector{N,T}, incidentray::OpticalRay{T,N}, temperature::T, pressure::T, ::Bool, firstray::Bool = false) -> Tuple{SVector{N,T}, T, T}Processes an intersection of an OpticalRay with an OpticalInterface, distinct behaviors must be implemented for each subclass of OpticalInterface.
point is the 3D intersection point in global space, normal is the surface normal at the intersection point.
If test is true then the behavior of the ray should be deterministic. firstray indicates that this ray is the first segment of the trace and therefore the origin is not offset.
The values returned are the normalized direction of the ray after the intersection, the instantaneous power of the ray after the intersection and the optical path length of the ray up to the intersection.
nothing is returned if the ray should stop here, in order to obtain the correct intensity on the detector through monte carlo integration nothing should be returned proportionally to create the correct power distribution. i.e. If the interface should modulate power to 76% then 24% of calls to this function should return nothing.
OpticSim.quadraticroots — Methodonly returns real roots
OpticSim.reset! — Methodreset!(a::HierarchicalImage{T})Resets the pixels in the image to zero(T). Do this rather than image .= zero(T) because that will cause every pixel to be accessed, and therefore allocated. For large images this can cause huge memory traffic.
OpticSim.resetdetector! — Methodresetdetector!(system::AbstractOpticalSystem{T})Reset the deterctor image of system to zero.
OpticSim.reversenormal — Methodreversenormal(a::Intersection{T,N})Used by the CSG complement operator (i.e. -) to reverse the inside outside sense of the object.
OpticSim.samplesurface — Methodsamplesurface(surf::ParametricSurface{T,N}, samplefunction::Function, numsamples::Int = 30)Sample a parametric surface on an even numsamples×numsamples grid in UV space with provided function
OpticSim.semidiameter — Methodsemidiameter(system::AxisymmetricOpticalSystem{T}) -> TGet the semidiameter of system, that is the semidiameter of the entrance pupil (i.e. first surface) of the system.
OpticSim.snell — Methodsnell(surfacenormal::AbstractVector{T}, raydirection::AbstractVector{T}, nᵢ::T, nₜ::T) -> Tuple{T,T}nᵢ is the index of refraction on the incidence side of the interface. nₜ is the index of refraction on the transmission side.
Returns sinθᵢ and sinθₜ according to Snell's law.
OpticSim.sphericalangle — Methodreturns the spherical angle formed by the cone with centervector at its center with neighbor1,neighbor2 the edges
OpticSim.sphericalcircle — Functioncreates a circular polygon that subtends a half angle of θ
OpticSim.sum! — Methodsum!(a::HierarchicalImage{T}, b::HierarchicalImage{T})Add the contents of b to a in an efficient way.
OpticSim.surfaceintersection — Methodsurfaceintersection(surf::Surface{T}, r::AbstractRay{T}) where {T}Calculates the intersection of r with a surface of any type, surf. Note that some surfaces cannot be intersected analytically so must be wrapped in an AcceleratedParametricSurface in order to be intersected.
Returns an EmptyInterval if there is no Intersection, an Interval if there is one or two intersections and a DisjointUnion if there are more than two intersections.
OpticSim.temperature — Methodtemperature(system::AbstractOpticalSystem{T}) -> TGet the temperature of system in °C.
OpticSim.trace — Methodtrace(system::AbstractOpticalSystem{T}, ray::OpticalRay{T}; trackrays = nothing, test = false)Traces system with ray, if test is enabled then fresnel reflections are disabled and the power distribution will not be correct. Returns either a LensTrace if the ray hits the detector or nothing otherwise.
trackrays can be passed an empty vector to accumulate the LensTrace objects at each intersection of ray with a surface in the system.
OpticSim.trace — Methodtrace(assembly::LensAssembly{T}, r::OpticalRay{T}, temperature::T = 20.0, pressure::T = 1.0; trackrays = nothing, test = false)Returns the ray as it exits the assembly in the form of a LensTrace object if it hits any element in the assembly, otherwise nothing. Recursive rays are offset by a small amount (RAY_OFFSET) to prevent it from immediately reintersecting the same lens element.
trackrays can be passed an empty vector to accumulate the LensTrace objects at each intersection of ray with a surface in the assembly.
OpticSim.trace — Methodtrace(system::AbstractOpticalSystem{T}, raygenerator::OpticalRayGenerator{T}; printprog = true, test = false)Traces system with rays generated by raygenerator on a single thread. Optionally the progress can be printed to the REPL. If test is enabled then fresnel reflections are disabled and the power distribution will not be correct. If outpath is specified then the result will be saved to this path.
Returns the detector image of the system.
OpticSim.traceMT — MethodtraceMT(system::AbstractOpticalSystem{T}, raygenerator::OpticalRayGenerator{T}; printprog = true, test = false)Traces system with rays generated by raygenerator using as many threads as possible. Optionally the progress can be printed to the REPL. If test is enabled then fresnel reflections are disabled and the power distribution will not be correct. If outpath is specified then the result will be saved to this path.
Returns the accumulated detector image from all threads.
OpticSim.tracehits — Methodtracehits(system::AbstractOpticalSystem{T}, raygenerator::OpticalRayGenerator{T}; printprog = true, test = false)Traces system with rays generated by raygenerator on a single thread. Optionally the progress can be printed to the REPL. If test is enabled then fresnel reflections are disabled and the power distribution will not be correct.
Returns a list of LensTraces which hit the detector.
OpticSim.tracehitsMT — MethodtracehitsMT(system::AbstractOpticalSystem{T}, raygenerator::OpticalRayGenerator{T}; printprog = true, test = false)Traces system with rays generated by raygenerator using as many threads as possible. Optionally the progress can be printed to the REPL. If test is enabled then fresnel reflections are disabled and the power distribution will not be correct.
Returns a list of LensTraces which hit the detector, accumulated from all threads.
OpticSim.transform — Methodtransform(surf::CSGGenerator{T}, transform::Transform{T} = identitytransform(T)) -> CSGGenerator{T}Returns a new CSGGenerator with another transform applied. This is useful if you want multiple copies of a premade CSG structure with different transforms, for example in an MLA.
OpticSim.triangulate — Methodtriangulate(surf::ParametricSurface{S,N}, quads_per_row::Int, extensionu::Bool = false, extensionv::Bool = false, radialu::Bool = false, radialv::Bool = false)Create an array of triangles representing the parametric surface where vertices are sampled on an even grid in UV space. The surface can be extended by 1% in u and v separately, and specifying either u or v as being radial - i.e. detemining the radius on the surface e.g. rho for zernike - will result in that dimension being sampled using sqwrt so that area of triangles is uniform. The extension will also only apply to the maximum in this case.
OpticSim.triangulatedintersection — Methodtriangulatedintersection(surf::AcceleratedParametricSurface{T,N,S}, r::AbstractRay{T,N})Intersection of a ray, r, with a triangulated surface, surf, no concept of inside so never returns a RayOrigin Interval.
OpticSim.uv — Methoduv(surf::ParametricSurface{T}, p::SVector{3,T}) -> SVector{2,T}
uv(surf::ParametricSurface{T}, x::T, y::T, z::T) -> SVector{2,T}Returns the uv coordinate on surf of a point, p, in 3D space. If onsurface(surf, p) is false then the behavior is undefined, it may return an inorrect uv, an invalid uv, NaN or crash.
OpticSim.uvrange — Methoduvrange(s::ParametricSurface)
uvrange(::Type{S}) where {S<:ParametricSurface}Returns a tuple of the form: ((umin, umax), (vmin, vmax)) specifying the limits of the parameterisation for this surface type. Also implemented for some Surfaces which are not ParametricSurfaces (e.g. Rectangle).
OpticSim.uvtopix — Methoduvtopix(surf::Surface{T}, uv::SVector{2,T}, imsize::Tuple{Int,Int}) -> Tuple{Int,Int}Converts a uvcoordinate on surf to an integer index to a pixel in an image of size imsize. Not implemented on all Surface objects. Used to determine where in the detector image a ray has hit when in intersects the detector surface of an AbstractOpticalSystem.
OpticSim.vertices — MethodThe vertices of planar shapes are defined in a plane so they are two dimensional. In the local coordinate frame this is the x,y plane, so the implied z coordinate is 0
OpticSim.vertices — Methodreturns the 2 dimensional vertex points of the shape defining the lens aperture. These points lie in the plane of the shape
OpticSim.vertices — Methodreturns the 2D vertices in the plane of the rectangle
OpticSim.vertices3d — MethodReturns the vertices of the Hexagon represented in the local coordinate frame. The vertices lie in the z = 0 plane and are 2D
OpticSim.vertices3d — Methodreturns the vertices of the rectangle in 3D
OpticSim.virtualdistance — Methodreturns the virtual distance of the point from the lens plane. When |distance| == focallength then virtualdistance = ∞
OpticSim.virtualpoint — Methodcomputes the virtual point position corresponding to the input point, or returns nothing for points at infinity. point is specified in the lens coordinate frame
OpticSim.α — Methodα(ray::AbstractRay{T,N}, point::SVector{N,T}) -> TComputes the alpha corresponding to the closest position on the ray to point
Geometry
OpticSim.Geometry.Transform — MethodTransform(origin, forward) -> Transform{S}Returns the Transform of type S (default Float64) representing the local frame with origin and forward direction. the other 2 axes are computed automaticlly.
OpticSim.Geometry.Transform — MethodTransform(colx::Vec3{T}, coly::Vec3{T},colz::Vec3{T}, colw::Vec3{T}, ::Type{T} = Float64) where {T<:Real}Costruct a transform from the input columns.
OpticSim.Geometry.Transform — MethodTransform(rotation::AbstractArray{T,2}, translation::AbstractArray{T,1}) where {T<:Real} -> Transform{S}Returns the Transform of type S (default Float64) created by a rotation matrix (3x3) and translation vector of length 3.
OpticSim.Geometry.Transform — MethodTransform(rotation::SMatrix{3,3,T}, translation::SVector{3,T}) where {T<:Real} -> Transform{S}Returns the Transform of type S (default Float64) created by a rotation matrix and translation vector.
OpticSim.Geometry.Transform — MethodTransform(colx::Vec3{T}, coly::Vec3{T},colz::Vec3{T}, colw::Vec3{T}, ::Type{T} = Float64) where {T<:Real}Costruct a transform from the input columns.
OpticSim.Geometry.Transform — MethodTransform([S::Type]) -> Transform{S}Returns the Transform of type S (default Float64) representing the identity transform.
OpticSim.Geometry.Vec4 — MethodVec4(m::SMatrix{3,N,T} where{N,T<:Real} -> SMatrix{3,N,T})Input is matrix of 3d points, each column is one point. Returns matrix of 3d points with 1 appended in the last row.
OpticSim.Geometry.Vec4 — MethodVec4(v::SVector{3, T}) where {T<:Real} -> Vec4{T}Accept SVector and create a Vec4 type [v[1], v[2], v[3], 1]
Base.:* — MethodThe t and m matrices are allowed to be of different element type. This allows transforming a Unitful matrix for example:
id = identitytransform()
m = fill(1mm,3,4)
id*m #returns a matrix filled with Unitful quantities. If both matrices had to be the same type this would not workBase.:* — MethodThe t and m matrices are allowed to be of different element type. This allows transforming a Unitful matrix for example: WARNING: this doesn't work. The translation component of the transform matrix has to be in Unitful units but the rotation part has to be in unitless units for this to work. Only works if one assumes that the translation part of the transform implicitly has the same units as the Unitful vectors being transformed. Brittle and likely to cause obscure bugs.
id = identitytransform()
m = fill(1mm,3,4)
id*m #returns a matrix filled with Unitful quantities. If both matrices had to be the same type this would not workOpticSim.Geometry.decomposeRTS — MethoddecomposeRTS(tr::Transform{T}) where {T<:Real}return a touple containing the rotation matrix, the translation vector and the scale vecto represnting the transform.
OpticSim.Geometry.forward — Methodforward(t::Transform{<:Real}) -> Vec3Assuming t is a 3D rigid transform representing a local left-handed coordinate system, this function will return the third column, representing the "Z" axis.
OpticSim.Geometry.identitytransform — Methodidentitytransform([S::Type]) -> Transform{S}
Returns the Transform of type S (default Float64) representing the identity transform.
OpticSim.Geometry.local2world — Methodlocal2world(t::Transform{T}) where {T<:Real}return the transform matrix that takes a point in the local coordinate system to the global one
OpticSim.Geometry.right — Methodright(t::Transform{<:Real}) -> Vec3Assuming t is a 3D rigid transform representing a local left-handed coordinate system, this function will return the first column, representing the "X" axis.
OpticSim.Geometry.rotate — Methodrotate(a::Transform{T}, vector::Union{Vec3{T}, SVector{3,T}}) where {T<:Real} -> Vec3{T}apply the rotation part of the transform a to the vector vector - this operation is usually used to rotate direction vectors.
OpticSim.Geometry.rotation — Methodrotation(t::Transform{T}) where {T<:Real} -> SMatrix{3,3,T}returns the rotation part of the transform t - a 3x3 matrix.
OpticSim.Geometry.rotation — Methodrotation([S::Type], θ::T, ϕ::T, ψ::T) -> Transform{S}Returns the Transform of type S (default Float64) representing the rotation by θ, ϕ and ψ around the x, y and z axes respectively in radians.
OpticSim.Geometry.rotationX — MethodrotationX(angle::T) where {T<:Real} -> TransformBuilds a rotation matrix for a rotation around the x-axis. Parameters: The counter-clockwise angle in radians.
OpticSim.Geometry.rotationY — MethodrotationY(angle::T) where {T<:Real} -> TransformBuilds a rotation matrix for a rotation around the y-axis. Parameters: The counter-clockwise angle in radians.
OpticSim.Geometry.rotationZ — MethodrotationZ(angle::T) where {T<:Real} -> TransformBuilds a rotation matrix for a rotation around the z-axis. Parameters: The counter-clockwise angle in radians.
OpticSim.Geometry.rotationd — Methodrotationd([S::Type], θ::T, ϕ::T, ψ::T) -> Transform{S}Returns the Transform of type S (default Float64) representing the rotation by θ, ϕ and ψ around the x, y and z axes respectively in degrees.
OpticSim.Geometry.rotmat — Methodrotmat([S::Type], θ::T, ϕ::T, ψ::T) -> SMatrix{3,3,S}Returns the rotation matrix of type S (default Float64) representing the rotation by θ, ϕ and ψ around the x, y and z axes respectively in radians.
OpticSim.Geometry.rotmatbetween — Methodrotmatbetween([S::Type], a::SVector{3,T}, b::SVector{3,T}) -> SMatrix{3,3,S}Returns the rotation matrix of type S (default Float64) representing the rotation between vetors a and b, i.e. rotation(a,b) * a = b.
OpticSim.Geometry.rotmatd — Methodrotmatd([S::Type], θ::T, ϕ::T, ψ::T) -> SMatrix{3,3,S}Returns the rotation matrix of type S (default Float64) representing the rotation by θ, ϕ and ψ around the x, y and z axes respectively in degrees.
OpticSim.Geometry.scale — Methodscale(s::T) where {T<:Real}Creates a uniform scaling transform
OpticSim.Geometry.scale — Methodscale(t::Vec3{T}) where {T<:Real}Creates a scaling transform
OpticSim.Geometry.scale — Methodscale(x::T, y::T, z::T) where {T<:Real}Creates a scaling transform
OpticSim.Geometry.translation — Methodtranslation(x::T, y::T, z::T) where {T<:Real}Creates a translation transform
OpticSim.Geometry.translation — Methodtranslation(x::T, y::T, z::T) where {T<:Real}Creates a translation transform
OpticSim.Geometry.unitW4 — Methodreturns the unit vector [0, 0, 0, 1]
OpticSim.Geometry.unitX3 — Methodreturns the unit vector [1, 0, 0]
OpticSim.Geometry.unitX4 — Methodreturns the unit vector [1, 0, 0, 0]
OpticSim.Geometry.unitY3 — Methodreturns the unit vector [0, 1, 0]
OpticSim.Geometry.unitY4 — Methodreturns the unit vector [0, 1, 0, 0]
OpticSim.Geometry.unitZ3 — Methodreturns the unit vector [0, 0, 1]
OpticSim.Geometry.unitZ4 — Methodreturns the unit vector [0, 0, 1, 0]
OpticSim.Geometry.up — Methodup(t::Transform{<:Real}) -> Vec3Assuming t is a 3D rigid transform representing a local left-handed coordinate system, this function will return the second column, representing the "Y" axis.
OpticSim.Geometry.world2local — Methodworld2local(t::Transform{T}) where {T<:Real}return the transform matrix that takes a point in the global coordinate system to the local one
OpticSim.origin — Methodorigin(t::Transform{<:Real}) -> Vec3Assuming t is a 3D rigid transform representing a local left-handed coordinate system, this function will return the fourth column, containing the translation part of the transform in 3D.
Zernike
OpticSim.Zernike — ModuleModule to enclose Zernike polynomial specific functionality.
OpticSim.Zernike.NolltoNM — MethodNolltoNM(j::Int) -> Tuple{Int, Int}Convert Noll zernike index j to (N,M) form.
OpticSim.Zernike.OSAtoNM — MethodOSAtoNM(j::Int) -> Tuple{Int, Int}Convert OSA zernike index j to (N,M) form according to formula J = N * (N + 2) + M.
OpticSim.Zernike.R — MethodR(N::Int, M::Int, ρ::T) -> TEvaluate radial polynomial $R_{n}^{m}(\rho)$.
OpticSim.Zernike.normalisation — Methodnormalisation(::Type{T}, N::Int, M::Int) -> TNormalisation coefficient for Zernike polynomial term $Z_{n}^{m}$.
OpticSim.Zernike.δζ — Methodδζ(N::Int, M::Int, ρ::T, ϕ::T) -> Tuple{T,T}Evaluate partial derivatives of Zernike polynomial term $Z_{n}^{m}(\rho, \phi)$.
OpticSim.Zernike.ζ — Methodζ(N::Int, M::Int, ρ::T, ϕ::T) -> Tuple{T,T}Evaluate Zernike polynomial term $Z_{n}^{m}(\rho, \phi)$.
QType
OpticSim.QType — ModuleModule to enclose QType polynomial specific functionality. For reference see:
OpticSim.QType.S — MethodS(coeffs::SVector{NP1,T}, m::Int x::T) -> TEvaluates $\sum_{n=0}^{N}c_n^mQ_n^m(x)$ where $c_n^m$ is either an $\alpha$ or $\beta$ QType coefficient and $m \gt 0$.
OpticSim.QType.S0 — MethodS0(coeffs::SVector{NP1,T}, x::T) -> TEvaluates $\sum_{n=0}^{N}\alpha_n^0Q_n^0(x)$.
OpticSim.QType.dS0dx — MethoddS0dx(coeffs::SVector{NP1,T}, x::T) -> TEvaluates $\frac{\partial}{\partial x}\sum_{n=0}^{N}\alpha_n^0Q_n^0(x)$.
OpticSim.QType.dSdx — MethoddSdx(coeffs::SVector{NP1,T}, x::T) -> TEvaluates $\frac{\partial}{\partial x}\sum_{n=0}^{N}c_n^mQ_n^m(x)$ where $c_n^m$ is either an $\alpha$ or $\beta$ QType coefficient and $m \gt 0$.
Chebyshev
OpticSim.Chebyshev — ModuleModule to enclose Chebyshev polynomial specific functionality.
OpticSim.Chebyshev.T — MethodT(n::Int, q::R, fast::Bool = true) -> REvaluate Chebyshev polynomial of the first kind $T_n(q)$.
fast will use trigonometric definition, rather than the recursive definition which is much faster but slightly less precise.
OpticSim.Chebyshev.U — MethodU(n::Int, q::R, fast::Bool = true) -> REvaluate Chebyshev polynomial of the second kind $U_n(q)$.
fast will use trigonometric definition, rather than the recursive definition which is much faster but slightly less precise.
OpticSim.Chebyshev.dTdq — MethoddTdq(n::Int, q::R, fast::Bool = true) -> REvaluate derivative of Chebyshev polynomial of the first kind $\frac{dT_n}{dq}(q)$.
fast will use trigonometric definition, rather than the recursive definition which is much faster but slightly less precise.
Examples
OpticSim.Examples — ModuleContains example usage of the features in the OpticSim.jl package.
OpticSim.Examples.ArizonaEye — MethodArizonaEye(::Type{T} = Float64; accommodation::T = 0.0)The popular Arizona eye model taken from this definition. The accommodation of the eye can be varied in this model. Returns a DataFrame specifying the prescription of the eye model.
OpticSim.Examples.ModelEye — MethodModelEye(assembly::LensAssembly{T}, nsamples::Int = 17; pupil_radius::T = 3.0, detpixels::Int = 1000, transform::Transform{T} = identitytransform(T))Geometrically accurate model of the human eye focused at infinity with variable pupil_radius. The eye is added to the provided assembly to create a CSGOpticalSystem with the retina of the eye as the detector.
The eye can be positioned in the scene using the transform argument and the resolution of the detector specified with detpixels. By default the eye is directed along the positive z-axis with the vertex of the cornea at the origin.
nsamples determines the resolution at which accelerated surfaces within the eye are triangulated.
OpticSim.Examples.drawhex12RGB — Methoddraw 3 repeats of hex12RGB cluster
OpticSim.Examples.drawhex3RGB — Methoddraw 3 repeats of hex3RGB cluster
OpticSim.Examples.drawhexneighbors — Methoddraw the 2 ring neighbors of the hex cell at coordinates (0,0)
OpticSim.Examples.drawhexrect — Methoddraw hex cells that fit within a rectangular box centered at coordinates (0,0). Use fill color yellow.
OpticSim.Examples.drawhexrectcolors — Methoddraw hex cells that fit within a rectangular box centered at coordinates (0,0). Use random fill colors selected for maximum distinguishability.
OpticSim.Examples.drawhexregion — Methoddraw hex cell at coordinates (0,0) and the 1 and 2 ring neighbors
OpticSim.Examples.eyetrackHOE — FunctionThis example no longer works correctly. The visualization code needs to be updated to support RayListSource
OpticSim.Examples.hemisphere — Methodhemisphere()Create a geometric hemisphere
OpticSim.Examples.hex3cluster — MethodCreate a LatticeCluser with three elements at (0,0),(-1,0),(-1,1) coordinates in the HexBasis1 lattice
OpticSim.Examples.hexRGBW — MethodCreate a ClusterWithProperties with four types of elements, R,G,B,W
OpticSim.Examples.opticalhemisphere — Methodopticalhemisphere()Create an optical hemisphere that has optical material properties so it will reflect and refract light. In the previous example the hemisphere object had optical properties of Air, which is the default optical interface, so it won't refract or reflect light.
OpticSim.Examples.prism_refraction — MethodThis example no longer works correctly. The visualization code needs to be updated to support RayListSource