
IaC Options

Azure Database for MySQL – Flexible Server

https://aka.ms/ada

https://aka.ms/ada-feedback

Hosts: Avnish Rastogi / Jim Toland / Brian Hitney

https://aka.ms/ada
https://aka.ms/ada-feedback

Azure Database for MySQL

Live Roadmap and Q&A Session

 Join us for a LIVE Roadmap and Q&A session on July 14, 2022 1pm ET

 Get an inside look at the Azure Database for MySQL Roadmap and schedule

 Ask questions

 Find other sessions in the series: https://aka.ms/ada

 Register at https://aka.ms/mysqlroadmap

This session is intended for Microsoft Partners under NDA. When registering, be sure
to use your company e-mail address. This session will not be recorded.

https://aka.ms/ada
https://aka.ms/mysqlroadmap

• IaC is the management of infrastructure (networks,

virtual machines, load balancers, and connection

topology) in a descriptive model, using the same

versioning as a DevOps team uses for source code.

• An IaC model generates the same environment

every time it is applied.

• IaC is a key DevOps practice that is used in conjunction with continuous delivery.

• Azure provides native support for IaC via Azure Resource Manager, PowerShell,

the Azure CLI, and Bicep.

• Managing automated infrastructure in Azure is also supported by third-party

solutions such as Terraform, Ansible, Chef, Pulumi, etc.

• Different third-party solutions support different, and often multiple, file formats,

such as YAML, JSON, XML, HCL, etc.

https://docs.microsoft.com/en-us/devops/deliver/what-is-continuous-delivery

Option Description

Azure

PowerShell

• An extension of Windows PowerShell based on the .NET Standard; works with PowerShell

7.0.6 LTS and PowerShell 7.1.3 or higher on all platforms (Windows, macOS, and Linux).

• Contains cmdlets for performing both control plane and data plane operations in Azure by

making REST API calls to the Azure API.

Azure CLI • A cross-platform command-line program supporting Windows, macOS, and Linux.

• Uses shell on Windows, or bash on macOS and Linux.

ARM • Native solution for Azure IaC.

• ARM templates define resource details, including names, locations, availability zones, security

settings, and networks.

• Use Visual Studio, Visual Studio Code, or Azure Portal

• ARM templates are in JSON

Bicep • In a way, a revision to ARM, using the same core functionality and runtime.

• Bicep files compile to JSON, and then JSON is sent to Azure for deployment.

• If your organization is pursuing a multi-

cloud strategy, a cloud agnostic tool such as

Terraform might be a good fit.

• Azure Resource Manager (ARM), an Azure

native product, works with the latest Azure

features as soon as Microsoft releases them.

• Terraform, however, is open source and

supports 100+ providers.

• ARM templates and Terraform provide

different methods for variables, conditions,

and internal logic.

Terraform on Azure documentation - Articles,

samples, references, and resources - Terraform

*HashiCorp Configuration Language; easy to add comments,

more human readable and forgiving syntax

ARM Terraform

JSON HCL*

Parameters Variables

Variables Local Variables

Resources Resources

Functions Functions

Nested Templates Modules

Explicit Dependency Automatic Dependency

Refer by reference or

resourceid

Refer by resource or

data source

• It takes a significant amount of work to write the ARM infrastructure in a different

provider and achieve identical results.

https://docs.microsoft.com/en-us/azure/developer/terraform/

• An open-source infrastructure as code (IaC) software that

provides a consistent CLI workflow to manage hundreds of

cloud services.

• Terraform can manage infrastructure on multiple cloud

platforms including Azure, AWS, GCP, etc.

• A provider is responsible to provide APIs for their resources (VMs, DBs, etc.)

• Terraform code, written in HCL (Hashicorp Configuration Language), automatically

identify dependencies between resources to create or destroy them in the correct order.

• A terraform module is a standard interface for creating resources by providing input and

returning outputs.

• Terraform modules can call each other which greatly simplifies configurations.

• Terraform works by building a graph database that provides operators with insight into

resource dependencies.
Using Terraform with Azure

https://registry.terraform.io/browse/providers
https://docs.microsoft.com/en-us/azure/developer/terraform/overview

• Write: You define resources, which may be

across multiple cloud providers and services.

For example, you might create a configuration

to deploy an application on virtual machines

in a Virtual Private Cloud (VPC) network with

security groups and a load balancer.

• Init: Initialize working directory containing Terraform configuration files.

• Plan: Terraform creates an execution plan describing the infrastructure it will create,

update, or destroy based on the existing infrastructure and your configuration.

• Apply: On approval, Terraform performs the proposed operations in the correct order,

respecting any resource dependencies. For example, if you update the properties of a

virtual network and change the number of virtual machines, Terraform will recreate the

virtual network before scaling the virtual machines.

• Terraform Registry is the main directory of publicly available Terraform providers.

• A provider documentation in the registry is versioned.

• Resources from a given provider requires below information in the configuration file…

• Dependency Lock File automatically created each time you run terraform init

Provider Requirements Provider Configuration

terraform {

required_providers {

azurerm = {

source = "hashicorp/azurerm"

version = "~> 2.65"

}

}

required_version = ">= 1.1.0"

}

provider "azurerm" {

features {}

subscription_id = "5c5037e5-d3f1-4e7b-b3a9-f6bf94902b30"

}

• Terraform has two important components:

Terraform Core and Terraform Plugins.

• Terraform relies on plugins (“providers”) to

interact with cloud providers and other APIs

https://registry.terraform.io/browse/providers

• Terraform language include Input, Output and Locals block.

• Each input variable is declared using the “variable” block.

• Variable name can be any valid identifier except source, version, providers, count, for_each,

lifecycle, depends_on, and locals

variable "resource_group_v" {
description = "Azure Resource Group"
type = string
default = "avrastog-terra-rg"
nullable = false
sensitive = false
validation {

condition = length(var.resource_group_v) > 4 && substr(var.resource_group_v, 0, 8) == "avrastog"
error_message = "The resource group value must start with \"avrastog\"."

}
}

• Variables are referenced as an attribute on an object named “var”

• Set variables individually with the -var command line option or variable definition “.tfvars” file(s)
• terraform apply -var “var1=<value>”, -var “var2=<value>”

• Another option to set a variable is using TF_VAR_<variable_name> environment variable.

• Each output variable must be declared using an output block.

• A set of related values can be declared in a single “locals” block.

https://www.terraform.io/language/values/variables
https://www.terraform.io/language/values/outputs
https://www.terraform.io/language/values/locals

• Modules are the primary way to package and reuse resource configurations with Terraform.

• A module may include a set of resources.

• A set of Terraform configuration files in a single directory. Simple configurations may include:

o *.tf - contains set of configuration file(s).

o variables.tf - contains variables definition.

o outputs.tf - contains output definition.

• “To call a module” means to use it in the

configuration file.
module "server" {

count = 5

source = "./module_server"

region = var.region_v

}

• Other files to be aware of:

o terraform.tfstate and terraform.tfstate.backup: Contain Terraform state, and how Terraform keeps

track of the relationship between the configuration and the infrastructure provisioned.

o .tfstate file won’t appear until you run a terraform plan command.

https://learn.hashicorp.com/tutorials/terraform/module-create?in=terraform/modules#terraform-tfstate

• terraform init to initialize working

directory to download and install

the plugins for each provider.

• A core Terraform workflow has 3 steps:

o Write – Author Infrastructure as Code (IaC)

o Plan – Preview changes before applying
▪ terraform plan

▪ terraform plan –out=<planfile>

o Apply – Provision reproducible infrastructure
▪ terraform apply

▪ terraform apply <planfile> -var “var1=<value>”, -var “var2=<value>”

• Terraform plan is essentially a dry run on the configuration to provide detailed information

on what the deployment will look like.

o A newly created resource will have + while a Destroyed resource will have -

• Terraform apply will deploy the specified resources and create a state file “.tfstate”

• Command line interface to Terraform via the terraform command, which accepts a variety

of main commands such as …
o init

o validate

o plan

o apply

o destroy

• Other terraform commands includes …
o fmt

o graph

o output

o show

o state

o taint – mark a resource instance as not fully functional

Resource name Manages a…

azurerm_mysql_server MySQL server

azurerm_mysql_database MySQL database within a MySQL server

azurerm_mysql_server_key Customer Managed Key for a MySQL server

azurerm_mysql_virtual_network_rule MySQL virtual vetwork rule

azurerm_mysql_firewall_rule Firewall rule for a MySQL server

Single Server

Flexible Server

Resource name Manages a…

azurerm_mysql_flexible_server MySQL flexible server

azurerm_mysql_database MySQL database within a MySQL server

azurerm_mysql_flexible_server_firewall_rule Firewall rule for a MySQL flexible server

azurerm_mysql_server

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/mysql_server
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/resources/mysql_flexible_server
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/data-sources/mysql_server

Terraform Demo

Azure MySQL Office Hours Terraform Demo

file:///C:/Users/avrastog/OneDrive - Microsoft/MySQLNinja/terraform/officehrsdemo

• Define a provider (provider.tf)

• Input and Output Variables (variables.tf and outputs.tf)

• Provision Azure Resource Group (rg.tf)

• Provision Azure VNet, Delegated Subnet, Azure DNS, and Azure Virtual Network Link

(network.tf)

• Provision Azure Storage Account and Azure Log Analytics Workspace (storage.tf)

• Provision Azure DB for MySQL Single Server, configure firewall and provision a database

(mysqlss.tf)

• Provision Azure DB for MySQL Flexible Server (HA/Non HA, RR, DB, Public and Private, etc.)

(mysqlflex.tf)

M I C R OS OFT C O N F ID E NT IA L – F O R I N T E R NA L U S E O N L YM I C R OS OFT C O N F ID E NT IA L – F O R I N T E R NA L U S E O N L Y

Azure Database for MySQL

Live Roadmap and Q&A Session

 Join us for a LIVE Roadmap and Q&A session on July 14, 2022 1pm ET

 Get an inside look at the Azure Database for MySQL Roadmap and schedule

 Ask questions

 Find other sessions in the series: https://aka.ms/ada

 Register at https://aka.ms/mysqlroadmap

This session is intended for Microsoft Partners under NDA. When registering, be sure
to use your company e-mail address. This session will not be recorded.

https://aka.ms/ada
https://aka.ms/mysqlroadmap

