Module tinytroupe.environment.tiny_world
Expand source code
from tinytroupe.environment import logger, default
import copy
from datetime import datetime, timedelta
import textwrap
import random
import concurrent.futures
from tinytroupe.agent import *
from tinytroupe.utils import name_or_empty, pretty_datetime
import tinytroupe.control as control
from tinytroupe.control import transactional
from tinytroupe import utils
from tinytroupe import config_manager
from rich.console import Console
from typing import Any, TypeVar, Union
AgentOrWorld = Union["TinyPerson", "TinyWorld"]
class TinyWorld:
"""
Base class for environments.
"""
# A dict of all environments created so far.
all_environments = {} # name -> environment
# Whether to display environments communications or not, for all environments.
communication_display = True
def __init__(self, name: str=None, agents=[],
initial_datetime=datetime.now(),
interventions=[],
broadcast_if_no_target=True,
max_additional_targets_to_display=3):
"""
Initializes an environment.
Args:
name (str): The name of the environment.
agents (list): A list of agents to add to the environment.
initial_datetifme (datetime): The initial datetime of the environment, or None (i.e., explicit time is optional).
Defaults to the current datetime in the real world.
interventions (list): A list of interventions to apply in the environment at each simulation step.
broadcast_if_no_target (bool): If True, broadcast actions if the target of an action is not found.
max_additional_targets_to_display (int): The maximum number of additional targets to display in a communication. If None,
all additional targets are displayed.
"""
if name is not None:
self.name = name
else:
self.name = f"TinyWorld {utils.fresh_id(self.__class__.__name__)}"
self.current_datetime = initial_datetime
self.broadcast_if_no_target = broadcast_if_no_target
self.simulation_id = None # will be reset later if the agent is used within a specific simulation scope
self.agents = []
self.name_to_agent = {} # {agent_name: agent, agent_name_2: agent_2, ...}
self._interventions = interventions
# the buffer of communications that have been displayed so far, used for
# saving these communications to another output form later (e.g., caching)
self._displayed_communications_buffer = []
# a temporary buffer for communications target to make rendering easier
self._target_display_communications_buffer = []
self._max_additional_targets_to_display = max_additional_targets_to_display
self.console = Console()
# add the environment to the list of all environments
TinyWorld.add_environment(self)
self.add_agents(agents)
#######################################################################
# Simulation control methods
#######################################################################
@transactional()
def _step(self,
timedelta_per_step=None,
randomize_agents_order=True,
parallelize=True): # TODO have a configuration for parallelism?
"""
Performs a single step in the environment. This default implementation
simply calls makes all agents in the environment act and properly
handle the resulting actions. Subclasses might override this method to implement
different policies.
"""
# Increase current datetime if timedelta is given. This must happen before
# any other simulation updates, to make sure that the agents are acting
# in the correct time, particularly if only one step is being run.
self._advance_datetime(timedelta_per_step)
# Apply interventions.
#
# Why not in parallel? Owing to the very general nature of their potential effects,
# interventions are never parallelized, since that could introduce unforeseen race conditions.
for intervention in self._interventions:
should_apply_intervention = intervention.check_precondition()
if should_apply_intervention:
if TinyWorld.communication_display:
self._display_intervention_communication(intervention)
intervention.apply_effect()
logger.debug(f"[{self.name}] Intervention '{intervention.name}' was applied.")
# Agents can act in parallel or sequentially
if parallelize:
agents_actions = self._step_in_parallel(timedelta_per_step=timedelta_per_step)
else:
agents_actions = self._step_sequentially(timedelta_per_step=timedelta_per_step,
randomize_agents_order=randomize_agents_order)
return agents_actions
def _step_sequentially(self, timedelta_per_step=None, randomize_agents_order=True):
"""
The sequential version of the _step method to request agents to act.
"""
# agents can act in a random order
reordered_agents = copy.copy(self.agents)
if randomize_agents_order:
random.shuffle(reordered_agents)
# agents can act
agents_actions = {}
for agent in reordered_agents:
logger.debug(f"[{self.name}] Agent {name_or_empty(agent)} is acting.")
actions = agent.act(return_actions=True)
agents_actions[agent.name] = actions
self._handle_actions(agent, agent.pop_latest_actions())
return agents_actions
def _step_in_parallel(self, timedelta_per_step=None):
"""
A parallelized version of the _step method to request agents to act.
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = {executor.submit(agent.act, return_actions=True): agent for agent in self.agents}
agents_actions = {}
# Wait for all futures to complete
concurrent.futures.wait(futures.keys())
for future in futures:
agent = futures[future]
try:
actions = future.result()
agents_actions[agent.name] = actions
self._handle_actions(agent, agent.pop_latest_actions())
except Exception as exc:
logger.error(f"[{self.name}] Agent {name_or_empty(agent)} generated an exception: {exc}")
return agents_actions
def _advance_datetime(self, timedelta):
"""
Advances the current datetime of the environment by the specified timedelta.
Args:
timedelta (timedelta): The timedelta to advance the current datetime by.
"""
if timedelta is not None:
self.current_datetime += timedelta
else:
logger.info(f"[{self.name}] No timedelta provided, so the datetime was not advanced.")
@transactional()
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run(self, steps: int, timedelta_per_step=None, return_actions=False, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of steps.
Args:
steps (int): The number of steps to run the environment for.
timedelta_per_step (timedelta, optional): The time interval between steps. Defaults to None.
return_actions (bool, optional): If True, returns the actions taken by the agents. Defaults to False.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
parallelize (bool, optional): If True, agents act in parallel. Defaults to True.
Returns:
list: A list of actions taken by the agents over time, if return_actions is True. The list has this format:
[{agent_name: [action_1, action_2, ...]}, {agent_name_2: [action_1, action_2, ...]}, ...]
"""
agents_actions_over_time = []
for i in range(steps):
logger.info(f"[{self.name}] Running world simulation step {i+1} of {steps}.")
if TinyWorld.communication_display:
self._display_step_communication(cur_step=i+1, total_steps=steps, timedelta_per_step=timedelta_per_step)
agents_actions = self._step(timedelta_per_step=timedelta_per_step, randomize_agents_order=randomize_agents_order, parallelize=parallelize)
agents_actions_over_time.append(agents_actions)
if return_actions:
return agents_actions_over_time
@transactional()
def skip(self, steps: int, timedelta_per_step=None):
"""
Skips a given number of steps in the environment. That is to say, time shall pass, but no actions will be taken
by the agents or any other entity in the environment.
Args:
steps (int): The number of steps to skip.
timedelta_per_step (timedelta, optional): The time interval between steps. Defaults to None.
"""
self._advance_datetime(steps * timedelta_per_step)
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_minutes(self, minutes: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of minutes.
Args:
minutes (int): The number of minutes to run the environment for.
"""
self.run(steps=minutes, timedelta_per_step=timedelta(minutes=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_minutes(self, minutes: int):
"""
Skips a given number of minutes in the environment.
Args:
minutes (int): The number of minutes to skip.
"""
self.skip(steps=minutes, timedelta_per_step=timedelta(minutes=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_hours(self, hours: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of hours.
Args:
hours (int): The number of hours to run the environment for.
"""
self.run(steps=hours, timedelta_per_step=timedelta(hours=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_hours(self, hours: int):
"""
Skips a given number of hours in the environment.
Args:
hours (int): The number of hours to skip.
"""
self.skip(steps=hours, timedelta_per_step=timedelta(hours=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_days(self, days: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of days.
Args:
days (int): The number of days to run the environment for.
"""
self.run(steps=days, timedelta_per_step=timedelta(days=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_days(self, days: int):
"""
Skips a given number of days in the environment.
Args:
days (int): The number of days to skip.
"""
self.skip(steps=days, timedelta_per_step=timedelta(days=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_weeks(self, weeks: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of weeks.
Args:
weeks (int): The number of weeks to run the environment for.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
"""
self.run(steps=weeks, timedelta_per_step=timedelta(weeks=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_weeks(self, weeks: int):
"""
Skips a given number of weeks in the environment.
Args:
weeks (int): The number of weeks to skip.
"""
self.skip(steps=weeks, timedelta_per_step=timedelta(weeks=1))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_months(self, months: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of months.
Args:
months (int): The number of months to run the environment for.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
"""
self.run(steps=months, timedelta_per_step=timedelta(weeks=4), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_months(self, months: int):
"""
Skips a given number of months in the environment.
Args:
months (int): The number of months to skip.
"""
self.skip(steps=months, timedelta_per_step=timedelta(weeks=4))
@config_manager.config_defaults(parallelize="parallel_agent_actions")
def run_years(self, years: int, randomize_agents_order=True, parallelize=None):
"""
Runs the environment for a given number of years.
Args:
years (int): The number of years to run the environment for.
randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True.
"""
self.run(steps=years, timedelta_per_step=timedelta(days=365), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip_years(self, years: int):
"""
Skips a given number of years in the environment.
Args:
years (int): The number of years to skip.
"""
self.skip(steps=years, timedelta_per_step=timedelta(days=365))
#######################################################################
# Agent management methods
#######################################################################
def add_agents(self, agents: list):
"""
Adds a list of agents to the environment.
Args:
agents (list): A list of agents to add to the environment.
"""
for agent in agents:
self.add_agent(agent)
return self # for chaining
def add_agent(self, agent: TinyPerson):
"""
Adds an agent to the environment. The agent must have a unique name within the environment.
Args:
agent (TinyPerson): The agent to add to the environment.
Raises:
ValueError: If the agent name is not unique within the environment.
"""
# check if the agent is not already in the environment
if agent not in self.agents:
logger.debug(f"Adding agent {agent.name} to the environment.")
# Agent names must be unique in the environment.
# Check if the agent name is already there.
if agent.name not in self.name_to_agent:
agent.environment = self
self.agents.append(agent)
self.name_to_agent[agent.name] = agent
else:
raise ValueError(f"Agent names must be unique, but '{agent.name}' is already in the environment.")
else:
logger.warn(f"Agent {agent.name} is already in the environment.")
return self # for chaining
def remove_agent(self, agent: TinyPerson):
"""
Removes an agent from the environment.
Args:
agent (TinyPerson): The agent to remove from the environment.
"""
logger.debug(f"Removing agent {agent.name} from the environment.")
self.agents.remove(agent)
del self.name_to_agent[agent.name]
return self # for chaining
def remove_all_agents(self):
"""
Removes all agents from the environment.
"""
logger.debug(f"Removing all agents from the environment.")
self.agents = []
self.name_to_agent = {}
return self # for chaining
def get_agent_by_name(self, name: str) -> TinyPerson:
"""
Returns the agent with the specified name. If no agent with that name exists in the environment,
returns None.
Args:
name (str): The name of the agent to return.
Returns:
TinyPerson: The agent with the specified name.
"""
if name in self.name_to_agent:
return self.name_to_agent[name]
else:
return None
#######################################################################
# Intervention management methods
#######################################################################
def add_intervention(self, intervention):
"""
Adds an intervention to the environment.
Args:
intervention: The intervention to add to the environment.
"""
self._interventions.append(intervention)
#######################################################################
# Action handlers
#
# Specific actions issued by agents are handled by the environment,
# because they have effects beyond the agent itself.
#######################################################################
@transactional()
def _handle_actions(self, source: TinyPerson, actions: list):
"""
Handles the actions issued by the agents.
Args:
source (TinyPerson): The agent that issued the actions.
actions (list): A list of actions issued by the agents. Each action is actually a
JSON specification.
"""
for action in actions:
action_type = action["type"] # this is the only required field
content = action["content"] if "content" in action else None
target = action["target"] if "target" in action else None
logger.debug(f"[{self.name}] Handling action {action_type} from agent {name_or_empty(source)}. Content: {content}, target: {target}.")
# only some actions require the enviroment to intervene
if action_type == "REACH_OUT":
self._handle_reach_out(source, content, target)
elif action_type == "TALK":
self._handle_talk(source, content, target)
@transactional()
def _handle_reach_out(self, source_agent: TinyPerson, content: str, target: str):
"""
Handles the REACH_OUT action. This default implementation always allows REACH_OUT to succeed.
Subclasses might override this method to implement different policies.
Args:
source_agent (TinyPerson): The agent that issued the REACH_OUT action.
content (str): The content of the message.
target (str): The target of the message.
"""
# This default implementation always allows REACH_OUT to suceed.
target_agent = self.get_agent_by_name(target)
if target_agent is not None:
source_agent.make_agent_accessible(target_agent)
target_agent.make_agent_accessible(source_agent)
source_agent.socialize(f"{name_or_empty(target_agent)} was successfully reached out, and is now available for interaction.", source=self)
target_agent.socialize(f"{name_or_empty(source_agent)} reached out to you, and is now available for interaction.", source=self)
else:
logger.debug(f"[{self.name}] REACH_OUT action failed: target agent '{target}' not found.")
@transactional()
def _handle_talk(self, source_agent: TinyPerson, content: str, target: str):
"""
Handles the TALK action by delivering the specified content to the specified target.
Args:
source_agent (TinyPerson): The agent that issued the TALK action.
content (str): The content of the message.
target (str, optional): The target of the message.
"""
target_agent = self.get_agent_by_name(target)
logger.debug(f"[{self.name}] Delivering message from {name_or_empty(source_agent)} to {name_or_empty(target_agent)}.")
if target_agent is not None:
target_agent.listen(content, source=source_agent)
elif self.broadcast_if_no_target:
self.broadcast(content, source=source_agent)
#######################################################################
# Interaction methods
#######################################################################
@transactional()
def broadcast(self, speech: str, source: AgentOrWorld=None):
"""
Delivers a speech to all agents in the environment.
Args:
speech (str): The content of the message.
source (AgentOrWorld, optional): The agent or environment that issued the message. Defaults to None.
"""
logger.debug(f"[{self.name}] Broadcasting message: '{speech}'.")
for agent in self.agents:
# do not deliver the message to the source
if agent != source:
agent.listen(speech, source=source)
@transactional()
def broadcast_thought(self, thought: str, source: AgentOrWorld=None):
"""
Broadcasts a thought to all agents in the environment.
Args:
thought (str): The content of the thought.
"""
logger.debug(f"[{self.name}] Broadcasting thought: '{thought}'.")
for agent in self.agents:
agent.think(thought)
@transactional()
def broadcast_internal_goal(self, internal_goal: str):
"""
Broadcasts an internal goal to all agents in the environment.
Args:
internal_goal (str): The content of the internal goal.
"""
logger.debug(f"[{self.name}] Broadcasting internal goal: '{internal_goal}'.")
for agent in self.agents:
agent.internalize_goal(internal_goal)
@transactional()
def broadcast_context_change(self, context:list):
"""
Broadcasts a context change to all agents in the environment.
Args:
context (list): The content of the context change.
"""
logger.debug(f"[{self.name}] Broadcasting context change: '{context}'.")
for agent in self.agents:
agent.change_context(context)
def make_everyone_accessible(self):
"""
Makes all agents in the environment accessible to each other.
"""
for agent_1 in self.agents:
for agent_2 in self.agents:
if agent_1 != agent_2:
agent_1.make_agent_accessible(agent_2)
###########################################################
# Formatting conveniences
###########################################################
# TODO better names for these "display" methods
def _display_step_communication(self, cur_step, total_steps, timedelta_per_step=None):
"""
Displays the current communication and stores it in a buffer for later use.
"""
rendering = self._pretty_step(cur_step=cur_step, total_steps=total_steps, timedelta_per_step=timedelta_per_step)
self._push_and_display_latest_communication({"kind": 'step', "rendering": rendering, "content": None, "source": None, "target": None})
def _display_intervention_communication(self, intervention):
"""
Displays the current intervention communication and stores it in a buffer for later use.
"""
rendering = self._pretty_intervention(intervention)
self._push_and_display_latest_communication({"kind": 'intervention', "rendering": rendering, "content": None, "source": None, "target": None})
def _push_and_display_latest_communication(self, communication):
"""
Pushes the latest communications to the agent's buffer.
"""
#
# check if the communication is just repeating the last one for a different target
#
if len(self._displayed_communications_buffer) > 0:
# get values from last communication
last_communication = self._displayed_communications_buffer[-1]
last_kind = last_communication["kind"]
last_target = last_communication["target"]
last_source = last_communication["source"]
if last_kind == 'action':
last_content = last_communication["content"]["action"]["content"]
last_type = last_communication["content"]["action"]["type"]
elif last_kind == 'stimulus':
last_content = last_communication["content"]["stimulus"]["content"]
last_type = last_communication["content"]["stimulus"]["type"]
elif last_kind == 'stimuli':
last_stimulus = last_communication["content"]["stimuli"][0]
last_content = last_stimulus["content"]
last_type = last_stimulus["type"]
else:
last_content = None
last_type = None
# get values from current communication
current_kind = communication["kind"]
current_target = communication["target"]
current_source = communication["source"]
if current_kind == 'action':
current_content = communication["content"]["action"]["content"]
current_type = communication["content"]["action"]["type"]
elif current_kind == 'stimulus':
current_content = communication["content"]["stimulus"]["content"]
current_type = communication["content"]["stimulus"]["type"]
elif current_kind == 'stimuli':
current_stimulus = communication["content"]["stimuli"][0]
current_content = current_stimulus["content"]
current_type = current_stimulus["type"]
else:
current_content = None
current_type = None
# if we are repeating the last communication, let's simplify the rendering
if (last_source == current_source) and (last_type == current_type) and (last_kind == current_kind) and \
(last_content is not None) and (last_content == current_content) and \
(current_target is not None):
self._target_display_communications_buffer.append(current_target)
rich_style = utils.RichTextStyle.get_style_for(last_kind, last_type)
# print the additional target a limited number of times if a max is set, or
# always if no max is set.
if (self._max_additional_targets_to_display is None) or\
len(self._target_display_communications_buffer) < self._max_additional_targets_to_display:
communication["rendering"] = " " * len(last_source) + f"[{rich_style}] + --> [underline]{current_target}[/][/]"
elif len(self._target_display_communications_buffer) == self._max_additional_targets_to_display:
communication["rendering"] = " " * len(last_source) + f"[{rich_style}] + --> ...others...[/]"
else: # don't display anything anymore
communication["rendering"] = None
else:
# no repetition, so just display the communication and reset the targets buffer
self._target_display_communications_buffer = [] # resets
else:
# no repetition, so just display the communication and reset the targets buffer
self._target_display_communications_buffer = [] # resets
self._displayed_communications_buffer.append(communication)
self._display(communication)
def pop_and_display_latest_communications(self):
"""
Pops the latest communications and displays them.
"""
communications = self._displayed_communications_buffer
self._displayed_communications_buffer = []
for communication in communications:
self._display(communication)
return communications
def _display(self, communication:dict):
# unpack the rendering to find more info
content = communication["rendering"]
kind = communication["kind"]
if content is not None:
# render as appropriate
if kind == 'step':
self.console.rule(content)
else:
self.console.print(content)
def clear_communications_buffer(self):
"""
Cleans the communications buffer.
"""
self._displayed_communications_buffer = []
def __repr__(self):
return f"TinyWorld(name='{self.name}')"
def _pretty_step(self, cur_step, total_steps, timedelta_per_step=None):
rendering = f"{self.name} step {cur_step} of {total_steps}"
if timedelta_per_step is not None:
rendering += f" ({pretty_datetime(self.current_datetime)})"
return rendering
def _pretty_intervention(self, intervention):
indent = " > "
justification = textwrap.fill(
intervention.precondition_justification(),
width=TinyPerson.PP_TEXT_WIDTH,
initial_indent=indent,
subsequent_indent=indent,
)
rich_style = utils.RichTextStyle.get_style_for("intervention")
rendering = f"[{rich_style}] :zap: [bold] <<{intervention.name}>> Triggered, effects are being applied...[/] \n" + \
f"[italic]{justification}[/][/]"
# TODO add details about why the intervention was applied
return rendering
def pp_current_interactions(self, simplified=True, skip_system=True):
"""
Pretty prints the current messages from agents in this environment.
"""
print(self.pretty_current_interactions(simplified=simplified, skip_system=skip_system))
def pretty_current_interactions(self, simplified=True, skip_system=True, max_content_length=default["max_content_display_length"], first_n=None, last_n=None, include_omission_info:bool=True):
"""
Returns a pretty, readable, string with the current messages of agents in this environment.
"""
agent_contents = []
for agent in self.agents:
agent_content = f"#### Interactions from the point of view of {agent.name} agent:\n"
agent_content += f"**BEGIN AGENT {agent.name} HISTORY.**\n "
agent_content += agent.pretty_current_interactions(simplified=simplified, skip_system=skip_system, max_content_length=max_content_length, first_n=first_n, last_n=last_n, include_omission_info=include_omission_info) + "\n"
agent_content += f"**FINISHED AGENT {agent.name} HISTORY.**\n\n"
agent_contents.append(agent_content)
return "\n".join(agent_contents)
#######################################################################
# IO
#######################################################################
def encode_complete_state(self) -> dict:
"""
Encodes the complete state of the environment in a dictionary.
Returns:
dict: A dictionary encoding the complete state of the environment.
"""
to_copy = copy.copy(self.__dict__)
# remove the logger and other fields
del to_copy['console']
del to_copy['agents']
del to_copy['name_to_agent']
del to_copy['current_datetime']
del to_copy['_interventions'] # TODO: encode interventions
state = copy.deepcopy(to_copy)
# agents are encoded separately
state["agents"] = [agent.encode_complete_state() for agent in self.agents]
# datetime also has to be encoded separately
state["current_datetime"] = self.current_datetime.isoformat()
return state
def decode_complete_state(self, state:dict):
"""
Decodes the complete state of the environment from a dictionary.
Args:
state (dict): A dictionary encoding the complete state of the environment.
Returns:
Self: The environment decoded from the dictionary.
"""
state = copy.deepcopy(state)
#################################
# restore agents in-place
#################################
self.remove_all_agents()
for agent_state in state["agents"]:
try:
try:
agent = TinyPerson.get_agent_by_name(agent_state["name"])
except Exception as e:
raise ValueError(f"Could not find agent {agent_state['name']} for environment {self.name}.") from e
agent.decode_complete_state(agent_state)
self.add_agent(agent)
except Exception as e:
raise ValueError(f"Could not decode agent {agent_state['name']} for environment {self.name}.") from e
# remove the agent states to update the rest of the environment
del state["agents"]
# restore datetime
state["current_datetime"] = datetime.fromisoformat(state["current_datetime"])
# restore other fields
self.__dict__.update(state)
return self
@staticmethod
def add_environment(environment):
"""
Adds an environment to the list of all environments. Environment names must be unique,
so if an environment with the same name already exists, an error is raised.
"""
if environment.name in TinyWorld.all_environments:
raise ValueError(f"Environment names must be unique, but '{environment.name}' is already defined.")
else:
TinyWorld.all_environments[environment.name] = environment
@staticmethod
def set_simulation_for_free_environments(simulation):
"""
Sets the simulation if it is None. This allows free environments to be captured by specific simulation scopes
if desired.
"""
for environment in TinyWorld.all_environments.values():
if environment.simulation_id is None:
simulation.add_environment(environment)
@staticmethod
def get_environment_by_name(name: str):
"""
Returns the environment with the specified name. If no environment with that name exists,
returns None.
Args:
name (str): The name of the environment to return.
Returns:
TinyWorld: The environment with the specified name.
"""
if name in TinyWorld.all_environments:
return TinyWorld.all_environments[name]
else:
return None
@staticmethod
def clear_environments():
"""
Clears the list of all environments.
"""
TinyWorld.all_environments = {}
Classes
class TinyWorld (name: str = None, agents=[], initial_datetime=datetime.datetime(2025, 7, 16, 0, 9, 43, 295337), interventions=[], broadcast_if_no_target=True, max_additional_targets_to_display=3)
-
Base class for environments.
Initializes an environment.
Args
name
:str
- The name of the environment.
agents
:list
- A list of agents to add to the environment.
initial_datetifme
:datetime
- The initial datetime of the environment, or None (i.e., explicit time is optional). Defaults to the current datetime in the real world.
interventions
:list
- A list of interventions to apply in the environment at each simulation step.
broadcast_if_no_target
:bool
- If True, broadcast actions if the target of an action is not found.
max_additional_targets_to_display
:int
- The maximum number of additional targets to display in a communication. If None, all additional targets are displayed.
Expand source code
class TinyWorld: """ Base class for environments. """ # A dict of all environments created so far. all_environments = {} # name -> environment # Whether to display environments communications or not, for all environments. communication_display = True def __init__(self, name: str=None, agents=[], initial_datetime=datetime.now(), interventions=[], broadcast_if_no_target=True, max_additional_targets_to_display=3): """ Initializes an environment. Args: name (str): The name of the environment. agents (list): A list of agents to add to the environment. initial_datetifme (datetime): The initial datetime of the environment, or None (i.e., explicit time is optional). Defaults to the current datetime in the real world. interventions (list): A list of interventions to apply in the environment at each simulation step. broadcast_if_no_target (bool): If True, broadcast actions if the target of an action is not found. max_additional_targets_to_display (int): The maximum number of additional targets to display in a communication. If None, all additional targets are displayed. """ if name is not None: self.name = name else: self.name = f"TinyWorld {utils.fresh_id(self.__class__.__name__)}" self.current_datetime = initial_datetime self.broadcast_if_no_target = broadcast_if_no_target self.simulation_id = None # will be reset later if the agent is used within a specific simulation scope self.agents = [] self.name_to_agent = {} # {agent_name: agent, agent_name_2: agent_2, ...} self._interventions = interventions # the buffer of communications that have been displayed so far, used for # saving these communications to another output form later (e.g., caching) self._displayed_communications_buffer = [] # a temporary buffer for communications target to make rendering easier self._target_display_communications_buffer = [] self._max_additional_targets_to_display = max_additional_targets_to_display self.console = Console() # add the environment to the list of all environments TinyWorld.add_environment(self) self.add_agents(agents) ####################################################################### # Simulation control methods ####################################################################### @transactional() def _step(self, timedelta_per_step=None, randomize_agents_order=True, parallelize=True): # TODO have a configuration for parallelism? """ Performs a single step in the environment. This default implementation simply calls makes all agents in the environment act and properly handle the resulting actions. Subclasses might override this method to implement different policies. """ # Increase current datetime if timedelta is given. This must happen before # any other simulation updates, to make sure that the agents are acting # in the correct time, particularly if only one step is being run. self._advance_datetime(timedelta_per_step) # Apply interventions. # # Why not in parallel? Owing to the very general nature of their potential effects, # interventions are never parallelized, since that could introduce unforeseen race conditions. for intervention in self._interventions: should_apply_intervention = intervention.check_precondition() if should_apply_intervention: if TinyWorld.communication_display: self._display_intervention_communication(intervention) intervention.apply_effect() logger.debug(f"[{self.name}] Intervention '{intervention.name}' was applied.") # Agents can act in parallel or sequentially if parallelize: agents_actions = self._step_in_parallel(timedelta_per_step=timedelta_per_step) else: agents_actions = self._step_sequentially(timedelta_per_step=timedelta_per_step, randomize_agents_order=randomize_agents_order) return agents_actions def _step_sequentially(self, timedelta_per_step=None, randomize_agents_order=True): """ The sequential version of the _step method to request agents to act. """ # agents can act in a random order reordered_agents = copy.copy(self.agents) if randomize_agents_order: random.shuffle(reordered_agents) # agents can act agents_actions = {} for agent in reordered_agents: logger.debug(f"[{self.name}] Agent {name_or_empty(agent)} is acting.") actions = agent.act(return_actions=True) agents_actions[agent.name] = actions self._handle_actions(agent, agent.pop_latest_actions()) return agents_actions def _step_in_parallel(self, timedelta_per_step=None): """ A parallelized version of the _step method to request agents to act. """ with concurrent.futures.ThreadPoolExecutor() as executor: futures = {executor.submit(agent.act, return_actions=True): agent for agent in self.agents} agents_actions = {} # Wait for all futures to complete concurrent.futures.wait(futures.keys()) for future in futures: agent = futures[future] try: actions = future.result() agents_actions[agent.name] = actions self._handle_actions(agent, agent.pop_latest_actions()) except Exception as exc: logger.error(f"[{self.name}] Agent {name_or_empty(agent)} generated an exception: {exc}") return agents_actions def _advance_datetime(self, timedelta): """ Advances the current datetime of the environment by the specified timedelta. Args: timedelta (timedelta): The timedelta to advance the current datetime by. """ if timedelta is not None: self.current_datetime += timedelta else: logger.info(f"[{self.name}] No timedelta provided, so the datetime was not advanced.") @transactional() @config_manager.config_defaults(parallelize="parallel_agent_actions") def run(self, steps: int, timedelta_per_step=None, return_actions=False, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of steps. Args: steps (int): The number of steps to run the environment for. timedelta_per_step (timedelta, optional): The time interval between steps. Defaults to None. return_actions (bool, optional): If True, returns the actions taken by the agents. Defaults to False. randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True. parallelize (bool, optional): If True, agents act in parallel. Defaults to True. Returns: list: A list of actions taken by the agents over time, if return_actions is True. The list has this format: [{agent_name: [action_1, action_2, ...]}, {agent_name_2: [action_1, action_2, ...]}, ...] """ agents_actions_over_time = [] for i in range(steps): logger.info(f"[{self.name}] Running world simulation step {i+1} of {steps}.") if TinyWorld.communication_display: self._display_step_communication(cur_step=i+1, total_steps=steps, timedelta_per_step=timedelta_per_step) agents_actions = self._step(timedelta_per_step=timedelta_per_step, randomize_agents_order=randomize_agents_order, parallelize=parallelize) agents_actions_over_time.append(agents_actions) if return_actions: return agents_actions_over_time @transactional() def skip(self, steps: int, timedelta_per_step=None): """ Skips a given number of steps in the environment. That is to say, time shall pass, but no actions will be taken by the agents or any other entity in the environment. Args: steps (int): The number of steps to skip. timedelta_per_step (timedelta, optional): The time interval between steps. Defaults to None. """ self._advance_datetime(steps * timedelta_per_step) @config_manager.config_defaults(parallelize="parallel_agent_actions") def run_minutes(self, minutes: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of minutes. Args: minutes (int): The number of minutes to run the environment for. """ self.run(steps=minutes, timedelta_per_step=timedelta(minutes=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize) def skip_minutes(self, minutes: int): """ Skips a given number of minutes in the environment. Args: minutes (int): The number of minutes to skip. """ self.skip(steps=minutes, timedelta_per_step=timedelta(minutes=1)) @config_manager.config_defaults(parallelize="parallel_agent_actions") def run_hours(self, hours: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of hours. Args: hours (int): The number of hours to run the environment for. """ self.run(steps=hours, timedelta_per_step=timedelta(hours=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize) def skip_hours(self, hours: int): """ Skips a given number of hours in the environment. Args: hours (int): The number of hours to skip. """ self.skip(steps=hours, timedelta_per_step=timedelta(hours=1)) @config_manager.config_defaults(parallelize="parallel_agent_actions") def run_days(self, days: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of days. Args: days (int): The number of days to run the environment for. """ self.run(steps=days, timedelta_per_step=timedelta(days=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize) def skip_days(self, days: int): """ Skips a given number of days in the environment. Args: days (int): The number of days to skip. """ self.skip(steps=days, timedelta_per_step=timedelta(days=1)) @config_manager.config_defaults(parallelize="parallel_agent_actions") def run_weeks(self, weeks: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of weeks. Args: weeks (int): The number of weeks to run the environment for. randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True. """ self.run(steps=weeks, timedelta_per_step=timedelta(weeks=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize) def skip_weeks(self, weeks: int): """ Skips a given number of weeks in the environment. Args: weeks (int): The number of weeks to skip. """ self.skip(steps=weeks, timedelta_per_step=timedelta(weeks=1)) @config_manager.config_defaults(parallelize="parallel_agent_actions") def run_months(self, months: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of months. Args: months (int): The number of months to run the environment for. randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True. """ self.run(steps=months, timedelta_per_step=timedelta(weeks=4), randomize_agents_order=randomize_agents_order, parallelize=parallelize) def skip_months(self, months: int): """ Skips a given number of months in the environment. Args: months (int): The number of months to skip. """ self.skip(steps=months, timedelta_per_step=timedelta(weeks=4)) @config_manager.config_defaults(parallelize="parallel_agent_actions") def run_years(self, years: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of years. Args: years (int): The number of years to run the environment for. randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True. """ self.run(steps=years, timedelta_per_step=timedelta(days=365), randomize_agents_order=randomize_agents_order, parallelize=parallelize) def skip_years(self, years: int): """ Skips a given number of years in the environment. Args: years (int): The number of years to skip. """ self.skip(steps=years, timedelta_per_step=timedelta(days=365)) ####################################################################### # Agent management methods ####################################################################### def add_agents(self, agents: list): """ Adds a list of agents to the environment. Args: agents (list): A list of agents to add to the environment. """ for agent in agents: self.add_agent(agent) return self # for chaining def add_agent(self, agent: TinyPerson): """ Adds an agent to the environment. The agent must have a unique name within the environment. Args: agent (TinyPerson): The agent to add to the environment. Raises: ValueError: If the agent name is not unique within the environment. """ # check if the agent is not already in the environment if agent not in self.agents: logger.debug(f"Adding agent {agent.name} to the environment.") # Agent names must be unique in the environment. # Check if the agent name is already there. if agent.name not in self.name_to_agent: agent.environment = self self.agents.append(agent) self.name_to_agent[agent.name] = agent else: raise ValueError(f"Agent names must be unique, but '{agent.name}' is already in the environment.") else: logger.warn(f"Agent {agent.name} is already in the environment.") return self # for chaining def remove_agent(self, agent: TinyPerson): """ Removes an agent from the environment. Args: agent (TinyPerson): The agent to remove from the environment. """ logger.debug(f"Removing agent {agent.name} from the environment.") self.agents.remove(agent) del self.name_to_agent[agent.name] return self # for chaining def remove_all_agents(self): """ Removes all agents from the environment. """ logger.debug(f"Removing all agents from the environment.") self.agents = [] self.name_to_agent = {} return self # for chaining def get_agent_by_name(self, name: str) -> TinyPerson: """ Returns the agent with the specified name. If no agent with that name exists in the environment, returns None. Args: name (str): The name of the agent to return. Returns: TinyPerson: The agent with the specified name. """ if name in self.name_to_agent: return self.name_to_agent[name] else: return None ####################################################################### # Intervention management methods ####################################################################### def add_intervention(self, intervention): """ Adds an intervention to the environment. Args: intervention: The intervention to add to the environment. """ self._interventions.append(intervention) ####################################################################### # Action handlers # # Specific actions issued by agents are handled by the environment, # because they have effects beyond the agent itself. ####################################################################### @transactional() def _handle_actions(self, source: TinyPerson, actions: list): """ Handles the actions issued by the agents. Args: source (TinyPerson): The agent that issued the actions. actions (list): A list of actions issued by the agents. Each action is actually a JSON specification. """ for action in actions: action_type = action["type"] # this is the only required field content = action["content"] if "content" in action else None target = action["target"] if "target" in action else None logger.debug(f"[{self.name}] Handling action {action_type} from agent {name_or_empty(source)}. Content: {content}, target: {target}.") # only some actions require the enviroment to intervene if action_type == "REACH_OUT": self._handle_reach_out(source, content, target) elif action_type == "TALK": self._handle_talk(source, content, target) @transactional() def _handle_reach_out(self, source_agent: TinyPerson, content: str, target: str): """ Handles the REACH_OUT action. This default implementation always allows REACH_OUT to succeed. Subclasses might override this method to implement different policies. Args: source_agent (TinyPerson): The agent that issued the REACH_OUT action. content (str): The content of the message. target (str): The target of the message. """ # This default implementation always allows REACH_OUT to suceed. target_agent = self.get_agent_by_name(target) if target_agent is not None: source_agent.make_agent_accessible(target_agent) target_agent.make_agent_accessible(source_agent) source_agent.socialize(f"{name_or_empty(target_agent)} was successfully reached out, and is now available for interaction.", source=self) target_agent.socialize(f"{name_or_empty(source_agent)} reached out to you, and is now available for interaction.", source=self) else: logger.debug(f"[{self.name}] REACH_OUT action failed: target agent '{target}' not found.") @transactional() def _handle_talk(self, source_agent: TinyPerson, content: str, target: str): """ Handles the TALK action by delivering the specified content to the specified target. Args: source_agent (TinyPerson): The agent that issued the TALK action. content (str): The content of the message. target (str, optional): The target of the message. """ target_agent = self.get_agent_by_name(target) logger.debug(f"[{self.name}] Delivering message from {name_or_empty(source_agent)} to {name_or_empty(target_agent)}.") if target_agent is not None: target_agent.listen(content, source=source_agent) elif self.broadcast_if_no_target: self.broadcast(content, source=source_agent) ####################################################################### # Interaction methods ####################################################################### @transactional() def broadcast(self, speech: str, source: AgentOrWorld=None): """ Delivers a speech to all agents in the environment. Args: speech (str): The content of the message. source (AgentOrWorld, optional): The agent or environment that issued the message. Defaults to None. """ logger.debug(f"[{self.name}] Broadcasting message: '{speech}'.") for agent in self.agents: # do not deliver the message to the source if agent != source: agent.listen(speech, source=source) @transactional() def broadcast_thought(self, thought: str, source: AgentOrWorld=None): """ Broadcasts a thought to all agents in the environment. Args: thought (str): The content of the thought. """ logger.debug(f"[{self.name}] Broadcasting thought: '{thought}'.") for agent in self.agents: agent.think(thought) @transactional() def broadcast_internal_goal(self, internal_goal: str): """ Broadcasts an internal goal to all agents in the environment. Args: internal_goal (str): The content of the internal goal. """ logger.debug(f"[{self.name}] Broadcasting internal goal: '{internal_goal}'.") for agent in self.agents: agent.internalize_goal(internal_goal) @transactional() def broadcast_context_change(self, context:list): """ Broadcasts a context change to all agents in the environment. Args: context (list): The content of the context change. """ logger.debug(f"[{self.name}] Broadcasting context change: '{context}'.") for agent in self.agents: agent.change_context(context) def make_everyone_accessible(self): """ Makes all agents in the environment accessible to each other. """ for agent_1 in self.agents: for agent_2 in self.agents: if agent_1 != agent_2: agent_1.make_agent_accessible(agent_2) ########################################################### # Formatting conveniences ########################################################### # TODO better names for these "display" methods def _display_step_communication(self, cur_step, total_steps, timedelta_per_step=None): """ Displays the current communication and stores it in a buffer for later use. """ rendering = self._pretty_step(cur_step=cur_step, total_steps=total_steps, timedelta_per_step=timedelta_per_step) self._push_and_display_latest_communication({"kind": 'step', "rendering": rendering, "content": None, "source": None, "target": None}) def _display_intervention_communication(self, intervention): """ Displays the current intervention communication and stores it in a buffer for later use. """ rendering = self._pretty_intervention(intervention) self._push_and_display_latest_communication({"kind": 'intervention', "rendering": rendering, "content": None, "source": None, "target": None}) def _push_and_display_latest_communication(self, communication): """ Pushes the latest communications to the agent's buffer. """ # # check if the communication is just repeating the last one for a different target # if len(self._displayed_communications_buffer) > 0: # get values from last communication last_communication = self._displayed_communications_buffer[-1] last_kind = last_communication["kind"] last_target = last_communication["target"] last_source = last_communication["source"] if last_kind == 'action': last_content = last_communication["content"]["action"]["content"] last_type = last_communication["content"]["action"]["type"] elif last_kind == 'stimulus': last_content = last_communication["content"]["stimulus"]["content"] last_type = last_communication["content"]["stimulus"]["type"] elif last_kind == 'stimuli': last_stimulus = last_communication["content"]["stimuli"][0] last_content = last_stimulus["content"] last_type = last_stimulus["type"] else: last_content = None last_type = None # get values from current communication current_kind = communication["kind"] current_target = communication["target"] current_source = communication["source"] if current_kind == 'action': current_content = communication["content"]["action"]["content"] current_type = communication["content"]["action"]["type"] elif current_kind == 'stimulus': current_content = communication["content"]["stimulus"]["content"] current_type = communication["content"]["stimulus"]["type"] elif current_kind == 'stimuli': current_stimulus = communication["content"]["stimuli"][0] current_content = current_stimulus["content"] current_type = current_stimulus["type"] else: current_content = None current_type = None # if we are repeating the last communication, let's simplify the rendering if (last_source == current_source) and (last_type == current_type) and (last_kind == current_kind) and \ (last_content is not None) and (last_content == current_content) and \ (current_target is not None): self._target_display_communications_buffer.append(current_target) rich_style = utils.RichTextStyle.get_style_for(last_kind, last_type) # print the additional target a limited number of times if a max is set, or # always if no max is set. if (self._max_additional_targets_to_display is None) or\ len(self._target_display_communications_buffer) < self._max_additional_targets_to_display: communication["rendering"] = " " * len(last_source) + f"[{rich_style}] + --> [underline]{current_target}[/][/]" elif len(self._target_display_communications_buffer) == self._max_additional_targets_to_display: communication["rendering"] = " " * len(last_source) + f"[{rich_style}] + --> ...others...[/]" else: # don't display anything anymore communication["rendering"] = None else: # no repetition, so just display the communication and reset the targets buffer self._target_display_communications_buffer = [] # resets else: # no repetition, so just display the communication and reset the targets buffer self._target_display_communications_buffer = [] # resets self._displayed_communications_buffer.append(communication) self._display(communication) def pop_and_display_latest_communications(self): """ Pops the latest communications and displays them. """ communications = self._displayed_communications_buffer self._displayed_communications_buffer = [] for communication in communications: self._display(communication) return communications def _display(self, communication:dict): # unpack the rendering to find more info content = communication["rendering"] kind = communication["kind"] if content is not None: # render as appropriate if kind == 'step': self.console.rule(content) else: self.console.print(content) def clear_communications_buffer(self): """ Cleans the communications buffer. """ self._displayed_communications_buffer = [] def __repr__(self): return f"TinyWorld(name='{self.name}')" def _pretty_step(self, cur_step, total_steps, timedelta_per_step=None): rendering = f"{self.name} step {cur_step} of {total_steps}" if timedelta_per_step is not None: rendering += f" ({pretty_datetime(self.current_datetime)})" return rendering def _pretty_intervention(self, intervention): indent = " > " justification = textwrap.fill( intervention.precondition_justification(), width=TinyPerson.PP_TEXT_WIDTH, initial_indent=indent, subsequent_indent=indent, ) rich_style = utils.RichTextStyle.get_style_for("intervention") rendering = f"[{rich_style}] :zap: [bold] <<{intervention.name}>> Triggered, effects are being applied...[/] \n" + \ f"[italic]{justification}[/][/]" # TODO add details about why the intervention was applied return rendering def pp_current_interactions(self, simplified=True, skip_system=True): """ Pretty prints the current messages from agents in this environment. """ print(self.pretty_current_interactions(simplified=simplified, skip_system=skip_system)) def pretty_current_interactions(self, simplified=True, skip_system=True, max_content_length=default["max_content_display_length"], first_n=None, last_n=None, include_omission_info:bool=True): """ Returns a pretty, readable, string with the current messages of agents in this environment. """ agent_contents = [] for agent in self.agents: agent_content = f"#### Interactions from the point of view of {agent.name} agent:\n" agent_content += f"**BEGIN AGENT {agent.name} HISTORY.**\n " agent_content += agent.pretty_current_interactions(simplified=simplified, skip_system=skip_system, max_content_length=max_content_length, first_n=first_n, last_n=last_n, include_omission_info=include_omission_info) + "\n" agent_content += f"**FINISHED AGENT {agent.name} HISTORY.**\n\n" agent_contents.append(agent_content) return "\n".join(agent_contents) ####################################################################### # IO ####################################################################### def encode_complete_state(self) -> dict: """ Encodes the complete state of the environment in a dictionary. Returns: dict: A dictionary encoding the complete state of the environment. """ to_copy = copy.copy(self.__dict__) # remove the logger and other fields del to_copy['console'] del to_copy['agents'] del to_copy['name_to_agent'] del to_copy['current_datetime'] del to_copy['_interventions'] # TODO: encode interventions state = copy.deepcopy(to_copy) # agents are encoded separately state["agents"] = [agent.encode_complete_state() for agent in self.agents] # datetime also has to be encoded separately state["current_datetime"] = self.current_datetime.isoformat() return state def decode_complete_state(self, state:dict): """ Decodes the complete state of the environment from a dictionary. Args: state (dict): A dictionary encoding the complete state of the environment. Returns: Self: The environment decoded from the dictionary. """ state = copy.deepcopy(state) ################################# # restore agents in-place ################################# self.remove_all_agents() for agent_state in state["agents"]: try: try: agent = TinyPerson.get_agent_by_name(agent_state["name"]) except Exception as e: raise ValueError(f"Could not find agent {agent_state['name']} for environment {self.name}.") from e agent.decode_complete_state(agent_state) self.add_agent(agent) except Exception as e: raise ValueError(f"Could not decode agent {agent_state['name']} for environment {self.name}.") from e # remove the agent states to update the rest of the environment del state["agents"] # restore datetime state["current_datetime"] = datetime.fromisoformat(state["current_datetime"]) # restore other fields self.__dict__.update(state) return self @staticmethod def add_environment(environment): """ Adds an environment to the list of all environments. Environment names must be unique, so if an environment with the same name already exists, an error is raised. """ if environment.name in TinyWorld.all_environments: raise ValueError(f"Environment names must be unique, but '{environment.name}' is already defined.") else: TinyWorld.all_environments[environment.name] = environment @staticmethod def set_simulation_for_free_environments(simulation): """ Sets the simulation if it is None. This allows free environments to be captured by specific simulation scopes if desired. """ for environment in TinyWorld.all_environments.values(): if environment.simulation_id is None: simulation.add_environment(environment) @staticmethod def get_environment_by_name(name: str): """ Returns the environment with the specified name. If no environment with that name exists, returns None. Args: name (str): The name of the environment to return. Returns: TinyWorld: The environment with the specified name. """ if name in TinyWorld.all_environments: return TinyWorld.all_environments[name] else: return None @staticmethod def clear_environments(): """ Clears the list of all environments. """ TinyWorld.all_environments = {}
Subclasses
Class variables
var all_environments
var communication_display
Static methods
def add_environment(environment)
-
Adds an environment to the list of all environments. Environment names must be unique, so if an environment with the same name already exists, an error is raised.
Expand source code
@staticmethod def add_environment(environment): """ Adds an environment to the list of all environments. Environment names must be unique, so if an environment with the same name already exists, an error is raised. """ if environment.name in TinyWorld.all_environments: raise ValueError(f"Environment names must be unique, but '{environment.name}' is already defined.") else: TinyWorld.all_environments[environment.name] = environment
def clear_environments()
-
Clears the list of all environments.
Expand source code
@staticmethod def clear_environments(): """ Clears the list of all environments. """ TinyWorld.all_environments = {}
def get_environment_by_name(name: str)
-
Returns the environment with the specified name. If no environment with that name exists, returns None.
Args
name
:str
- The name of the environment to return.
Returns
TinyWorld
- The environment with the specified name.
Expand source code
@staticmethod def get_environment_by_name(name: str): """ Returns the environment with the specified name. If no environment with that name exists, returns None. Args: name (str): The name of the environment to return. Returns: TinyWorld: The environment with the specified name. """ if name in TinyWorld.all_environments: return TinyWorld.all_environments[name] else: return None
def set_simulation_for_free_environments(simulation)
-
Sets the simulation if it is None. This allows free environments to be captured by specific simulation scopes if desired.
Expand source code
@staticmethod def set_simulation_for_free_environments(simulation): """ Sets the simulation if it is None. This allows free environments to be captured by specific simulation scopes if desired. """ for environment in TinyWorld.all_environments.values(): if environment.simulation_id is None: simulation.add_environment(environment)
Methods
def add_agent(self, agent: TinyPerson)
-
Adds an agent to the environment. The agent must have a unique name within the environment.
Args
agent
:TinyPerson
- The agent to add to the environment.
Raises
ValueError
- If the agent name is not unique within the environment.
Expand source code
def add_agent(self, agent: TinyPerson): """ Adds an agent to the environment. The agent must have a unique name within the environment. Args: agent (TinyPerson): The agent to add to the environment. Raises: ValueError: If the agent name is not unique within the environment. """ # check if the agent is not already in the environment if agent not in self.agents: logger.debug(f"Adding agent {agent.name} to the environment.") # Agent names must be unique in the environment. # Check if the agent name is already there. if agent.name not in self.name_to_agent: agent.environment = self self.agents.append(agent) self.name_to_agent[agent.name] = agent else: raise ValueError(f"Agent names must be unique, but '{agent.name}' is already in the environment.") else: logger.warn(f"Agent {agent.name} is already in the environment.") return self # for chaining
def add_agents(self, agents: list)
-
Adds a list of agents to the environment.
Args
agents
:list
- A list of agents to add to the environment.
Expand source code
def add_agents(self, agents: list): """ Adds a list of agents to the environment. Args: agents (list): A list of agents to add to the environment. """ for agent in agents: self.add_agent(agent) return self # for chaining
def add_intervention(self, intervention)
-
Adds an intervention to the environment.
Args
intervention
- The intervention to add to the environment.
Expand source code
def add_intervention(self, intervention): """ Adds an intervention to the environment. Args: intervention: The intervention to add to the environment. """ self._interventions.append(intervention)
def broadcast(*args, **kwargs)
-
Expand source code
def wrapper(*args, **kwargs): obj_under_transaction = args[0] simulation = current_simulation() obj_sim_id = obj_under_transaction.simulation_id if hasattr(obj_under_transaction, 'simulation_id') else None logger.debug(f"-----------------------------------------> Transaction: {func.__name__} with args {args[1:]} and kwargs {kwargs} under simulation {obj_sim_id}, parallel={parallel}.") parallel_id = str(threading.current_thread()) transaction = Transaction(obj_under_transaction, simulation, func, *args, **kwargs) result = transaction.execute(begin_parallel=parallel, parallel_id=parallel_id) return result
def broadcast_context_change(*args, **kwargs)
-
Expand source code
def wrapper(*args, **kwargs): obj_under_transaction = args[0] simulation = current_simulation() obj_sim_id = obj_under_transaction.simulation_id if hasattr(obj_under_transaction, 'simulation_id') else None logger.debug(f"-----------------------------------------> Transaction: {func.__name__} with args {args[1:]} and kwargs {kwargs} under simulation {obj_sim_id}, parallel={parallel}.") parallel_id = str(threading.current_thread()) transaction = Transaction(obj_under_transaction, simulation, func, *args, **kwargs) result = transaction.execute(begin_parallel=parallel, parallel_id=parallel_id) return result
def broadcast_internal_goal(*args, **kwargs)
-
Expand source code
def wrapper(*args, **kwargs): obj_under_transaction = args[0] simulation = current_simulation() obj_sim_id = obj_under_transaction.simulation_id if hasattr(obj_under_transaction, 'simulation_id') else None logger.debug(f"-----------------------------------------> Transaction: {func.__name__} with args {args[1:]} and kwargs {kwargs} under simulation {obj_sim_id}, parallel={parallel}.") parallel_id = str(threading.current_thread()) transaction = Transaction(obj_under_transaction, simulation, func, *args, **kwargs) result = transaction.execute(begin_parallel=parallel, parallel_id=parallel_id) return result
def broadcast_thought(*args, **kwargs)
-
Expand source code
def wrapper(*args, **kwargs): obj_under_transaction = args[0] simulation = current_simulation() obj_sim_id = obj_under_transaction.simulation_id if hasattr(obj_under_transaction, 'simulation_id') else None logger.debug(f"-----------------------------------------> Transaction: {func.__name__} with args {args[1:]} and kwargs {kwargs} under simulation {obj_sim_id}, parallel={parallel}.") parallel_id = str(threading.current_thread()) transaction = Transaction(obj_under_transaction, simulation, func, *args, **kwargs) result = transaction.execute(begin_parallel=parallel, parallel_id=parallel_id) return result
def clear_communications_buffer(self)
-
Cleans the communications buffer.
Expand source code
def clear_communications_buffer(self): """ Cleans the communications buffer. """ self._displayed_communications_buffer = []
def decode_complete_state(self, state: dict)
-
Decodes the complete state of the environment from a dictionary.
Args
state
:dict
- A dictionary encoding the complete state of the environment.
Returns
Self
- The environment decoded from the dictionary.
Expand source code
def decode_complete_state(self, state:dict): """ Decodes the complete state of the environment from a dictionary. Args: state (dict): A dictionary encoding the complete state of the environment. Returns: Self: The environment decoded from the dictionary. """ state = copy.deepcopy(state) ################################# # restore agents in-place ################################# self.remove_all_agents() for agent_state in state["agents"]: try: try: agent = TinyPerson.get_agent_by_name(agent_state["name"]) except Exception as e: raise ValueError(f"Could not find agent {agent_state['name']} for environment {self.name}.") from e agent.decode_complete_state(agent_state) self.add_agent(agent) except Exception as e: raise ValueError(f"Could not decode agent {agent_state['name']} for environment {self.name}.") from e # remove the agent states to update the rest of the environment del state["agents"] # restore datetime state["current_datetime"] = datetime.fromisoformat(state["current_datetime"]) # restore other fields self.__dict__.update(state) return self
def encode_complete_state(self) ‑> dict
-
Encodes the complete state of the environment in a dictionary.
Returns
dict
- A dictionary encoding the complete state of the environment.
Expand source code
def encode_complete_state(self) -> dict: """ Encodes the complete state of the environment in a dictionary. Returns: dict: A dictionary encoding the complete state of the environment. """ to_copy = copy.copy(self.__dict__) # remove the logger and other fields del to_copy['console'] del to_copy['agents'] del to_copy['name_to_agent'] del to_copy['current_datetime'] del to_copy['_interventions'] # TODO: encode interventions state = copy.deepcopy(to_copy) # agents are encoded separately state["agents"] = [agent.encode_complete_state() for agent in self.agents] # datetime also has to be encoded separately state["current_datetime"] = self.current_datetime.isoformat() return state
def get_agent_by_name(self, name: str) ‑> TinyPerson
-
Returns the agent with the specified name. If no agent with that name exists in the environment, returns None.
Args
name
:str
- The name of the agent to return.
Returns
TinyPerson
- The agent with the specified name.
Expand source code
def get_agent_by_name(self, name: str) -> TinyPerson: """ Returns the agent with the specified name. If no agent with that name exists in the environment, returns None. Args: name (str): The name of the agent to return. Returns: TinyPerson: The agent with the specified name. """ if name in self.name_to_agent: return self.name_to_agent[name] else: return None
def make_everyone_accessible(self)
-
Makes all agents in the environment accessible to each other.
Expand source code
def make_everyone_accessible(self): """ Makes all agents in the environment accessible to each other. """ for agent_1 in self.agents: for agent_2 in self.agents: if agent_1 != agent_2: agent_1.make_agent_accessible(agent_2)
def pop_and_display_latest_communications(self)
-
Pops the latest communications and displays them.
Expand source code
def pop_and_display_latest_communications(self): """ Pops the latest communications and displays them. """ communications = self._displayed_communications_buffer self._displayed_communications_buffer = [] for communication in communications: self._display(communication) return communications
def pp_current_interactions(self, simplified=True, skip_system=True)
-
Pretty prints the current messages from agents in this environment.
Expand source code
def pp_current_interactions(self, simplified=True, skip_system=True): """ Pretty prints the current messages from agents in this environment. """ print(self.pretty_current_interactions(simplified=simplified, skip_system=skip_system))
def pretty_current_interactions(self, simplified=True, skip_system=True, max_content_length=4000, first_n=None, last_n=None, include_omission_info: bool = True)
-
Returns a pretty, readable, string with the current messages of agents in this environment.
Expand source code
def pretty_current_interactions(self, simplified=True, skip_system=True, max_content_length=default["max_content_display_length"], first_n=None, last_n=None, include_omission_info:bool=True): """ Returns a pretty, readable, string with the current messages of agents in this environment. """ agent_contents = [] for agent in self.agents: agent_content = f"#### Interactions from the point of view of {agent.name} agent:\n" agent_content += f"**BEGIN AGENT {agent.name} HISTORY.**\n " agent_content += agent.pretty_current_interactions(simplified=simplified, skip_system=skip_system, max_content_length=max_content_length, first_n=first_n, last_n=last_n, include_omission_info=include_omission_info) + "\n" agent_content += f"**FINISHED AGENT {agent.name} HISTORY.**\n\n" agent_contents.append(agent_content) return "\n".join(agent_contents)
def remove_agent(self, agent: TinyPerson)
-
Removes an agent from the environment.
Args
agent
:TinyPerson
- The agent to remove from the environment.
Expand source code
def remove_agent(self, agent: TinyPerson): """ Removes an agent from the environment. Args: agent (TinyPerson): The agent to remove from the environment. """ logger.debug(f"Removing agent {agent.name} from the environment.") self.agents.remove(agent) del self.name_to_agent[agent.name] return self # for chaining
def remove_all_agents(self)
-
Removes all agents from the environment.
Expand source code
def remove_all_agents(self): """ Removes all agents from the environment. """ logger.debug(f"Removing all agents from the environment.") self.agents = [] self.name_to_agent = {} return self # for chaining
def run(*args, **kwargs)
-
Expand source code
def wrapper(*args, **kwargs): obj_under_transaction = args[0] simulation = current_simulation() obj_sim_id = obj_under_transaction.simulation_id if hasattr(obj_under_transaction, 'simulation_id') else None logger.debug(f"-----------------------------------------> Transaction: {func.__name__} with args {args[1:]} and kwargs {kwargs} under simulation {obj_sim_id}, parallel={parallel}.") parallel_id = str(threading.current_thread()) transaction = Transaction(obj_under_transaction, simulation, func, *args, **kwargs) result = transaction.execute(begin_parallel=parallel, parallel_id=parallel_id) return result
def run_days(self, days: int, randomize_agents_order=True, parallelize=None)
-
Runs the environment for a given number of days.
Args
days
:int
- The number of days to run the environment for.
Expand source code
@config_manager.config_defaults(parallelize="parallel_agent_actions") def run_days(self, days: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of days. Args: days (int): The number of days to run the environment for. """ self.run(steps=days, timedelta_per_step=timedelta(days=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def run_hours(self, hours: int, randomize_agents_order=True, parallelize=None)
-
Runs the environment for a given number of hours.
Args
hours
:int
- The number of hours to run the environment for.
Expand source code
@config_manager.config_defaults(parallelize="parallel_agent_actions") def run_hours(self, hours: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of hours. Args: hours (int): The number of hours to run the environment for. """ self.run(steps=hours, timedelta_per_step=timedelta(hours=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def run_minutes(self, minutes: int, randomize_agents_order=True, parallelize=None)
-
Runs the environment for a given number of minutes.
Args
minutes
:int
- The number of minutes to run the environment for.
Expand source code
@config_manager.config_defaults(parallelize="parallel_agent_actions") def run_minutes(self, minutes: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of minutes. Args: minutes (int): The number of minutes to run the environment for. """ self.run(steps=minutes, timedelta_per_step=timedelta(minutes=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def run_months(self, months: int, randomize_agents_order=True, parallelize=None)
-
Runs the environment for a given number of months.
Args
months
:int
- The number of months to run the environment for.
randomize_agents_order
:bool
, optional- If True, randomizes the order in which agents act. Defaults to True.
Expand source code
@config_manager.config_defaults(parallelize="parallel_agent_actions") def run_months(self, months: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of months. Args: months (int): The number of months to run the environment for. randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True. """ self.run(steps=months, timedelta_per_step=timedelta(weeks=4), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def run_weeks(self, weeks: int, randomize_agents_order=True, parallelize=None)
-
Runs the environment for a given number of weeks.
Args
weeks
:int
- The number of weeks to run the environment for.
randomize_agents_order
:bool
, optional- If True, randomizes the order in which agents act. Defaults to True.
Expand source code
@config_manager.config_defaults(parallelize="parallel_agent_actions") def run_weeks(self, weeks: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of weeks. Args: weeks (int): The number of weeks to run the environment for. randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True. """ self.run(steps=weeks, timedelta_per_step=timedelta(weeks=1), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def run_years(self, years: int, randomize_agents_order=True, parallelize=None)
-
Runs the environment for a given number of years.
Args
years
:int
- The number of years to run the environment for.
randomize_agents_order
:bool
, optional- If True, randomizes the order in which agents act. Defaults to True.
Expand source code
@config_manager.config_defaults(parallelize="parallel_agent_actions") def run_years(self, years: int, randomize_agents_order=True, parallelize=None): """ Runs the environment for a given number of years. Args: years (int): The number of years to run the environment for. randomize_agents_order (bool, optional): If True, randomizes the order in which agents act. Defaults to True. """ self.run(steps=years, timedelta_per_step=timedelta(days=365), randomize_agents_order=randomize_agents_order, parallelize=parallelize)
def skip(*args, **kwargs)
-
Expand source code
def wrapper(*args, **kwargs): obj_under_transaction = args[0] simulation = current_simulation() obj_sim_id = obj_under_transaction.simulation_id if hasattr(obj_under_transaction, 'simulation_id') else None logger.debug(f"-----------------------------------------> Transaction: {func.__name__} with args {args[1:]} and kwargs {kwargs} under simulation {obj_sim_id}, parallel={parallel}.") parallel_id = str(threading.current_thread()) transaction = Transaction(obj_under_transaction, simulation, func, *args, **kwargs) result = transaction.execute(begin_parallel=parallel, parallel_id=parallel_id) return result
def skip_days(self, days: int)
-
Skips a given number of days in the environment.
Args
days
:int
- The number of days to skip.
Expand source code
def skip_days(self, days: int): """ Skips a given number of days in the environment. Args: days (int): The number of days to skip. """ self.skip(steps=days, timedelta_per_step=timedelta(days=1))
def skip_hours(self, hours: int)
-
Skips a given number of hours in the environment.
Args
hours
:int
- The number of hours to skip.
Expand source code
def skip_hours(self, hours: int): """ Skips a given number of hours in the environment. Args: hours (int): The number of hours to skip. """ self.skip(steps=hours, timedelta_per_step=timedelta(hours=1))
def skip_minutes(self, minutes: int)
-
Skips a given number of minutes in the environment.
Args
minutes
:int
- The number of minutes to skip.
Expand source code
def skip_minutes(self, minutes: int): """ Skips a given number of minutes in the environment. Args: minutes (int): The number of minutes to skip. """ self.skip(steps=minutes, timedelta_per_step=timedelta(minutes=1))
def skip_months(self, months: int)
-
Skips a given number of months in the environment.
Args
months
:int
- The number of months to skip.
Expand source code
def skip_months(self, months: int): """ Skips a given number of months in the environment. Args: months (int): The number of months to skip. """ self.skip(steps=months, timedelta_per_step=timedelta(weeks=4))
def skip_weeks(self, weeks: int)
-
Skips a given number of weeks in the environment.
Args
weeks
:int
- The number of weeks to skip.
Expand source code
def skip_weeks(self, weeks: int): """ Skips a given number of weeks in the environment. Args: weeks (int): The number of weeks to skip. """ self.skip(steps=weeks, timedelta_per_step=timedelta(weeks=1))
def skip_years(self, years: int)
-
Skips a given number of years in the environment.
Args
years
:int
- The number of years to skip.
Expand source code
def skip_years(self, years: int): """ Skips a given number of years in the environment. Args: years (int): The number of years to skip. """ self.skip(steps=years, timedelta_per_step=timedelta(days=365))