Bases: ABC
The BasicAgent class is the abstract class for the agent.
Initialize the BasicAgent.
Source code in agents/agent/basic.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | def __init__(self, name: str) -> None:
"""
Initialize the BasicAgent.
:param name: The name of the agent.
"""
self._step = 0
self._complete = False
self._name = name
self._status = self.status_manager.CONTINUE.value
self._register_self()
self.retriever_factory = retriever.RetrieverFactory()
self._memory = Memory()
self._host = None
self._processor: Optional[BaseProcessor] = None
self._state = None
self.Puppeteer: puppeteer.AppPuppeteer = None
|
host
property
writable
Get the host of the agent.
memory
property
writable
Get the memory of the agent.
name
property
Get the name of the agent.
processor
property
writable
state
property
Get the state of the agent.
status
property
writable
Get the status of the agent.
step
property
writable
Get the step of the agent.
_register_self()
classmethod
Register the subclass upon instantiation.
Source code in agents/agent/basic.py
367
368
369
370
371
372
373
374 | @classmethod
def _register_self(self):
"""
Register the subclass upon instantiation.
"""
cls = type(self)
if cls.__name__ not in AgentRegistry._registry:
AgentRegistry.register(cls.__name__, cls)
|
add_memory(memory_item)
Update the memory of the agent.
Parameters: |
-
memory_item
(MemoryItem )
–
|
Source code in agents/agent/basic.py
| def add_memory(self, memory_item: MemoryItem) -> None:
"""
Update the memory of the agent.
:param memory_item: The memory item to add.
"""
self._memory.add_memory_item(memory_item)
|
build_experience_retriever()
Build the experience retriever.
Source code in agents/agent/basic.py
| def build_experience_retriever(self) -> None:
"""
Build the experience retriever.
"""
pass
|
build_human_demonstration_retriever()
Build the human demonstration retriever.
Source code in agents/agent/basic.py
| def build_human_demonstration_retriever(self) -> None:
"""
Build the human demonstration retriever.
"""
pass
|
build_offline_docs_retriever()
Build the offline docs retriever.
Source code in agents/agent/basic.py
| def build_offline_docs_retriever(self) -> None:
"""
Build the offline docs retriever.
"""
pass
|
build_online_search_retriever()
Build the online search retriever.
Source code in agents/agent/basic.py
| def build_online_search_retriever(self) -> None:
"""
Build the online search retriever.
"""
pass
|
clear_memory()
Clear the memory of the agent.
Source code in agents/agent/basic.py
| def clear_memory(self) -> None:
"""
Clear the memory of the agent.
"""
self._memory.clear()
|
create_puppeteer_interface()
Create the puppeteer interface.
Source code in agents/agent/basic.py
| def create_puppeteer_interface(self) -> puppeteer.AppPuppeteer:
"""
Create the puppeteer interface.
"""
pass
|
delete_memory(step)
Delete the memory of the agent.
Parameters: |
-
step
(int )
–
The step of the memory item to delete.
|
Source code in agents/agent/basic.py
| def delete_memory(self, step: int) -> None:
"""
Delete the memory of the agent.
:param step: The step of the memory item to delete.
"""
self._memory.delete_memory_item(step)
|
get_cls(name)
classmethod
Retrieves an agent class from the registry.
Parameters: |
-
name
(str )
–
The name of the agent class.
|
Source code in agents/agent/basic.py
376
377
378
379
380
381
382
383 | @classmethod
def get_cls(cls, name: str) -> Type["BasicAgent"]:
"""
Retrieves an agent class from the registry.
:param name: The name of the agent class.
:return: The agent class.
"""
return AgentRegistry().get_cls(name)
|
get_prompter()
abstractmethod
Get the prompt for the agent.
Source code in agents/agent/basic.py
132
133
134
135
136
137
138 | @abstractmethod
def get_prompter(self) -> str:
"""
Get the prompt for the agent.
:return: The prompt.
"""
pass
|
get_response(message, namescope, use_backup_engine, configs=configs)
classmethod
Get the response for the prompt.
Parameters: |
-
message
(List[dict] )
–
-
namescope
(str )
–
The namescope for the LLMs.
-
use_backup_engine
(bool )
–
Whether to use the backup engine.
-
configs
–
|
Source code in agents/agent/basic.py
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167 | @classmethod
def get_response(
cls,
message: List[dict],
namescope: str,
use_backup_engine: bool,
configs=configs,
) -> str:
"""
Get the response for the prompt.
:param message: The message for LLMs.
:param namescope: The namescope for the LLMs.
:param use_backup_engine: Whether to use the backup engine.
:param configs: The configurations.
:return: The response.
"""
response_string, cost = llm_call.get_completion(
message, namescope, use_backup_engine=use_backup_engine, configs=configs
)
return response_string, cost
|
handle(context)
Handle the agent.
Parameters: |
-
context
(Context )
–
The context for the agent.
|
Source code in agents/agent/basic.py
| def handle(self, context: Context) -> None:
"""
Handle the agent.
:param context: The context for the agent.
"""
self.state.handle(self, context)
|
message_constructor()
abstractmethod
Construct the message.
Returns: |
-
List[Dict[str, Union[str, List[Dict[str, str]]]]]
–
|
Source code in agents/agent/basic.py
140
141
142
143
144
145
146 | @abstractmethod
def message_constructor(self) -> List[Dict[str, Union[str, List[Dict[str, str]]]]]:
"""
Construct the message.
:return: The message.
"""
pass
|
print_response()
Print the response.
Source code in agents/agent/basic.py
| def print_response(self) -> None:
"""
Print the response.
"""
pass
|
process(context)
Process the agent.
Source code in agents/agent/basic.py
| def process(self, context: Context) -> None:
"""
Process the agent.
"""
pass
|
process_asker(ask_user=True)
Ask for the process.
Parameters: |
-
ask_user
(bool , default:
True
)
–
Whether to ask the user for the questions.
|
Source code in agents/agent/basic.py
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304 | def process_asker(self, ask_user: bool = True) -> None:
"""
Ask for the process.
:param ask_user: Whether to ask the user for the questions.
"""
_ask_message = "Could you please answer the following questions to help me understand your needs and complete the task?"
_none_answer_message = "The answer for the question is not available, please proceed with your own knowledge or experience, or leave it as a placeholder. Do not ask the same question again."
if self.processor:
question_list = self.processor.question_list
if ask_user:
utils.print_with_color(
_ask_message,
"yellow",
)
for index, question in enumerate(question_list):
if ask_user:
answer = question_asker(question, index + 1)
if not answer.strip():
continue
qa_pair = {"question": question, "answer": answer}
utils.append_string_to_file(
configs["QA_PAIR_FILE"], json.dumps(qa_pair)
)
else:
qa_pair = {
"question": question,
"answer": _none_answer_message,
}
self.blackboard.add_questions(qa_pair)
|
process_comfirmation()
abstractmethod
Confirm the process.
Source code in agents/agent/basic.py
| @abstractmethod
def process_comfirmation(self) -> None:
"""
Confirm the process.
"""
pass
|
process_resume()
Resume the process.
Source code in agents/agent/basic.py
| def process_resume(self) -> None:
"""
Resume the process.
"""
if self.processor:
self.processor.resume()
|
reflection()
TODO:
Reflect on the action.
Source code in agents/agent/basic.py
| def reflection(self) -> None:
"""
TODO:
Reflect on the action.
"""
pass
|
response_to_dict(response)
staticmethod
Convert the response to a dictionary.
Source code in agents/agent/basic.py
169
170
171
172
173
174
175
176 | @staticmethod
def response_to_dict(response: str) -> Dict[str, str]:
"""
Convert the response to a dictionary.
:param response: The response.
:return: The dictionary.
"""
return utils.json_parser(response)
|
set_memory_from_list_of_dicts(data)
Set the memory from the list of dictionaries.
Parameters: |
-
data
(List[Dict[str, str]] )
–
The list of dictionaries.
|
Source code in agents/agent/basic.py
194
195
196
197
198
199
200
201
202 | def set_memory_from_list_of_dicts(self, data: List[Dict[str, str]]) -> None:
"""
Set the memory from the list of dictionaries.
:param data: The list of dictionaries.
"""
assert isinstance(data, list), "The data should be a list of dictionaries."
self._memory.from_list_of_dicts(data)
|
set_state(state)
Set the state of the agent.
Source code in agents/agent/basic.py
231
232
233
234
235
236
237
238
239
240
241 | def set_state(self, state: AgentState) -> None:
"""
Set the state of the agent.
:param state: The state of the agent.
"""
assert issubclass(
type(self), state.agent_class()
), f"The state is only for agent type of {state.agent_class()}, but the current agent is {type(self)}."
self._state = state
|