AppAgent Processing Strategy

AppAgent executes a 4-phase processing pipeline in CONTINUE and SCREENSHOT states. Each phase handles a specific aspect of application-level automation: data collection (screenshot + controls), LLM reasoning, action execution, and memory recording. This document details the implementation of each strategy based on the actual codebase.


Strategy Assembly

Processing strategies are assembled and orchestrated by the AppAgentProcessor class defined in ufo/agents/processors/app_agent_processor.py. The processor acts as the coordinator that initializes, configures, and executes the 4-phase pipeline for application-level automation.

AppAgentProcessor Overview

The AppAgentProcessor extends ProcessorTemplate and serves as the main orchestrator for AppAgent workflows:

class AppAgentProcessor(ProcessorTemplate):
    """
    App Agent Processor - Modern, extensible App Agent processing implementation.

    Processing Pipeline:
    1. Data Collection: Screenshot capture and UI control information (composed strategy)
    2. LLM Interaction: Context-aware prompting and response parsing
    3. Action Execution: UI automation and control interaction
    4. Memory Update: Agent memory and blackboard synchronization

    Middleware Stack:
    - Structured logging and debugging middleware
    """

    processor_context_class = AppAgentProcessorContext

    def __init__(self, agent: "AppAgent", global_context: "Context"):
        super().__init__(agent, global_context)

Strategy Registration

During initialization, AppAgentProcessor._setup_strategies() registers all four processing strategies:

def _setup_strategies(self) -> None:
    """Setup processing strategies for App Agent."""

    # Phase 1: Data collection (COMPOSED: Screenshot + Control Info)
    self.strategies[ProcessingPhase.DATA_COLLECTION] = ComposedStrategy(
        strategies=[
            AppScreenshotCaptureStrategy(),
            AppControlInfoStrategy(),
        ],
        name="AppDataCollectionStrategy",
        fail_fast=True,  # Data collection is critical
    )

    # Phase 2: LLM interaction (critical - fail_fast=True)
    self.strategies[ProcessingPhase.LLM_INTERACTION] = (
        AppLLMInteractionStrategy(
            fail_fast=True  # LLM failure should trigger recovery
        )
    )

    # Phase 3: Action execution (graceful - fail_fast=False)
    self.strategies[ProcessingPhase.ACTION_EXECUTION] = (
        AppActionExecutionStrategy(
            fail_fast=False  # Action failures can be handled gracefully
        )
    )

    # Phase 4: Memory update (graceful - fail_fast=False)
    self.strategies[ProcessingPhase.MEMORY_UPDATE] = (
        AppMemoryUpdateStrategy(
            fail_fast=False  # Memory update failures shouldn't stop process
        )
    )
Phase Strategy Class fail_fast Composition Rationale
DATA_COLLECTION ComposedStrategy (Screenshot + Control Info) ✓ True ✓ Composed Screenshot and control detection are critical for LLM context
LLM_INTERACTION AppLLMInteractionStrategy ✓ True ✗ Single LLM response failure requires immediate recovery
ACTION_EXECUTION AppActionExecutionStrategy ✗ False ✗ Single Action failures can be gracefully handled and retried
MEMORY_UPDATE AppMemoryUpdateStrategy ✗ False ✗ Single Memory failures shouldn't block the main execution flow

Composed Strategy Pattern:
Phase 1 uses ComposedStrategy to execute two sub-strategies sequentially:

  1. AppScreenshotCaptureStrategy: Captures application window + desktop screenshots
  2. AppControlInfoStrategy: Detects UI controls via UIA/OmniParser and creates annotations

This ensures both screenshot and control data are available together for the LLM analysis phase.

Middleware Configuration

The processor configures specialized logging middleware:

def _setup_middleware(self) -> None:
    """Setup middleware pipeline for App Agent."""
    self.middleware_chain = [AppAgentLoggingMiddleware()]

AppAgentLoggingMiddleware provides:

  • Subtask and application context tracking
  • Rich Panel displays with color coding
  • Action execution logging
  • Performance metrics and cost tracking

Processing Pipeline Architecture

graph TB subgraph "Phase 1: DATA_COLLECTION (ComposedStrategy)" SS[AppScreenshotCaptureStrategy<br/>Capture Screenshots] CI[AppControlInfoStrategy<br/>Detect & Annotate Controls] SS --> CI end subgraph "Phase 2: LLM_INTERACTION" LLM[AppLLMInteractionStrategy<br/>LLM Reasoning] end subgraph "Phase 3: ACTION_EXECUTION" AE[AppActionExecutionStrategy<br/>Execute UI Action] end subgraph "Phase 4: MEMORY_UPDATE" MU[AppMemoryUpdateStrategy<br/>Record in Memory & Blackboard] end CI --> LLM LLM --> AE AE --> MU style SS fill:#e1f5ff style CI fill:#e1f5ff style LLM fill:#fff4e6 style AE fill:#e8f5e9 style MU fill:#fce4ec

Phase 1: DATA_COLLECTION

Strategy: ComposedStrategy (Screenshot + Control Info)

Purpose: Gather comprehensive application UI context including screenshots and control information for LLM decision making.

# Composed strategy combines two sub-strategies
self.strategies[ProcessingPhase.DATA_COLLECTION] = ComposedStrategy(
    strategies=[
        AppScreenshotCaptureStrategy(),
        AppControlInfoStrategy(),
    ],
    name="AppDataCollectionStrategy",
    fail_fast=True,
)

Sub-Strategy 1: AppScreenshotCaptureStrategy

Purpose: Capture application window and desktop screenshots.

@depends_on("app_root", "log_path", "session_step")
@provides(
    "clean_screenshot_path",
    "annotated_screenshot_path",
    "desktop_screenshot_path",
    "ui_tree_path",
    "clean_screenshot_url",
    "desktop_screenshot_url",
    "application_window_info",
    "screenshot_saved_time",
)
class AppScreenshotCaptureStrategy(BaseProcessingStrategy):
    """Strategy for capturing application screenshots and desktop screenshots."""

    async def execute(self, agent, context) -> ProcessingResult:
        # 1. Capture application window screenshot
        clean_screenshot_url = await self._capture_app_screenshot(
            clean_screenshot_path, command_dispatcher
        )

        # 2. Capture desktop screenshot if needed
        if ufo_config.system.save_full_screen:
            desktop_screenshot_url = await self._capture_desktop_screenshot(
                desktop_screenshot_path, command_dispatcher
            )

        # 3. Capture UI tree if needed
        if ufo_config.system.save_ui_tree:
            await self._capture_ui_tree(ui_tree_path, command_dispatcher)

        # 4. Get application window information
        application_window_info = await self._get_application_window_info(
            command_dispatcher
        )

        return ProcessingResult(success=True, data={...})

Execution Steps:

sequenceDiagram participant Strategy participant CommandDispatcher participant Application Strategy->>CommandDispatcher: capture_window_screenshot() CommandDispatcher->>Application: Screenshot app window Application-->>Strategy: clean_screenshot_url Strategy->>Strategy: Save to log_path/action_stepN.png alt save_full_screen=True Strategy->>CommandDispatcher: capture_desktop_screenshot(all_screens=True) CommandDispatcher-->>Strategy: desktop_screenshot_url Strategy->>Strategy: Save to log_path/desktop_stepN.png end alt save_ui_tree=True Strategy->>CommandDispatcher: get_ui_tree() CommandDispatcher-->>Strategy: ui_tree JSON Strategy->>Strategy: Save to log_path/ui_trees/ui_tree_stepN.json end Strategy->>CommandDispatcher: get_app_window_info() CommandDispatcher-->>Strategy: application_window_info

Key Outputs:

Output Type Description Example
clean_screenshot_url str Base64 image of app window ...
clean_screenshot_path str File path to screenshot logs/action_step5.png
desktop_screenshot_url str Base64 image of desktop ...
application_window_info TargetInfo Window metadata (name, rect, type) TargetInfo(name="Word", rect=[0,0,1920,1080])
screenshot_saved_time float Performance timing (seconds) 0.324

Sub-Strategy 2: AppControlInfoStrategy

Purpose: Detect, filter, and annotate UI controls using UIA and/or OmniParser.

@depends_on("clean_screenshot_path", "application_window_info")
@provides(
    "control_info",
    "annotation_dict",
    "control_filter_time",
    "control_recorder",
    "annotated_screenshot_path",
    "annotated_screenshot_url",
)
class AppControlInfoStrategy(BaseProcessingStrategy):
    """Strategy for collecting and filtering UI control information."""

    def __init__(self, fail_fast: bool = True):
        super().__init__(name="app_control_info", fail_fast=fail_fast)
        self.control_detection_backend = ufo_config.system.control_backend
        self.photographer = PhotographerFacade()

        if "omniparser" in self.control_detection_backend:
            self.grounding_service = OmniparserGrounding(...)

Execution Steps:

sequenceDiagram participant Strategy participant UIA participant OmniParser participant Photographer alt UIA Backend Enabled Strategy->>UIA: get_app_window_controls_target_info() UIA-->>Strategy: api_control_list (50 controls) end alt OmniParser Backend Enabled Strategy->>OmniParser: screen_parsing(screenshot) OmniParser-->>Strategy: grounding_control_list (12 controls) end Strategy->>Strategy: Merge UIA + OmniParser lists<br/>(deduplicate by IoU overlap) Strategy->>Strategy: Create annotation_dict<br/>{id: TargetInfo} Strategy->>Photographer: capture_with_target_list()<br/>(draw labels [1], [2], [3]...) Photographer-->>Strategy: annotated_screenshot_url

Control Detection Backends:

UIA (UI Automation):

async def _collect_uia_controls(self, command_dispatcher) -> List[TargetInfo]:
    """Collect UIA controls from the application window."""
    result = await command_dispatcher.execute_commands([
        Command(
            tool_name="get_app_window_controls_target_info",
            parameters={"field_list": ["id", "name", "type", "rect", ...]},
        )
    ])

    target_info_list = [TargetInfo(**control) for control in result[0].result]
    return target_info_list

Advantages: Fast, accurate, native Windows controls Limitations: May miss custom controls, web content, icons

OmniParser (Visual):

async def _collect_grounding_controls(
    self, clean_screenshot_path, application_window_info
) -> List[TargetInfo]:
    """Collect controls using grounding service."""
    grounding_controls = self.grounding_service.screen_parsing(
        clean_screenshot_path, application_window_info
    )
    return grounding_controls

Advantages: Detects visual elements (icons, images, custom controls) Limitations: Slower, requires external service

Hybrid (UIA + OmniParser):

def _collect_merged_control_list(
    self, api_control_list, grounding_control_list
) -> List[TargetInfo]:
    """Merge UIA and grounding sources with IoU deduplication."""
    merged_controls = self.photographer.merge_target_info_list(
        api_control_list,
        grounding_control_list,
        iou_overlap_threshold=ufo_config.system.iou_threshold_for_merge,
    )
    return merged_controls

Advantage: Maximum coverage - native + visual elements

Annotation Process:

# Create annotation dictionary mapping IDs to controls
annotation_dict = {
    "1": TargetInfo(id="1", name="Export", type="Button", rect=[100, 200, 150, 230]),
    "2": TargetInfo(id="2", name="Save", type="Button", rect=[160, 200, 210, 230]),
    # ... more controls
}

# Draw labels on screenshot
annotated_screenshot_url = self._save_annotated_screenshot(
    application_window_info,
    clean_screenshot_path,
    merged_control_list,
    annotated_screenshot_path,
)

Control Detection Example

UIA detects: 45 controls (buttons, textboxes, menus)
OmniParser detects: 12 visual elements (icons, images)
IoU deduplication removes: 3 overlapping controls
Final merged list: 54 annotated controls [1] to [54]

Phase 2: LLM_INTERACTION

Strategy: AppLLMInteractionStrategy

Purpose: Build context-aware prompts with app-specific data and get LLM reasoning for next action.

@provides(
    "parsed_response",
    "response_text",
    "llm_cost",
    "prompt_message",
    "save_screenshot",
    "comment",
    "concat_screenshot_path",
    "plan",
    "observation",
    "last_control_screenshot_path",
    "action",
    "thought",
)
class AppLLMInteractionStrategy(BaseProcessingStrategy):
    """Strategy for LLM interaction with App Agent specific prompting."""

    async def execute(self, agent, context) -> ProcessingResult:
        # 1. Collect image strings (last step + current clean + annotated)
        image_string_list = self._collect_image_strings(...)

        # 2. Retrieve knowledge from RAG system
        knowledge_retrieved = self._knowledge_retrieval(agent, subtask)

        # 3. Build comprehensive prompt
        prompt_message = await self._build_app_prompt(...)

        # 4. Get LLM response with retry logic
        response_text, llm_cost = await self._get_llm_response(agent, prompt_message)

        # 5. Parse and validate response
        parsed_response = self._parse_app_response(agent, response_text)

        return ProcessingResult(success=True, data={...})

Execution Flow:

sequenceDiagram participant Strategy participant Photographer participant RAG participant LLM Strategy->>Photographer: Collect image strings Note over Strategy: - Last step screenshot (selected control)<br/>- Clean screenshot<br/>- Annotated screenshot<br/>- Concatenated clean+annotated Photographer-->>Strategy: image_string_list Strategy->>RAG: Retrieve knowledge for subtask Note over RAG: - Experience examples<br/>- Demonstration examples<br/>- Offline docs<br/>- Online search results RAG-->>Strategy: knowledge_retrieved Strategy->>Strategy: Build comprehensive prompt<br/>(images + controls + knowledge + history) Strategy->>LLM: Get response with retry (max 3 attempts) LLM-->>Strategy: response_text Strategy->>Strategy: Parse JSON response to AppAgentResponse Strategy-->>Strategy: Return parsed_response

Prompt Construction:

async def _build_app_prompt(
    self,
    agent,
    control_info,           # List of detected controls
    image_string_list,      # Screenshots
    knowledge_retrieved,     # RAG results
    request,                # User request
    subtask,                # Current subtask
    plan,                   # Previous plan
    prev_subtask,           # Previous subtasks
    application_process_name,
    host_message,           # Message from HostAgent
    session_step,
    request_logger,
) -> List[Dict]:
    """Build comprehensive prompt for App Agent."""

    # Get blackboard context
    blackboard_prompt = agent.blackboard.blackboard_to_prompt()

    # Get last successful actions
    last_success_actions = self._get_last_success_actions(agent)

    # Extract knowledge
    retrieved_examples = (
        knowledge_retrieved["experience_examples"] +
        knowledge_retrieved["demonstration_examples"]
    )
    retrieved_knowledge = (
        knowledge_retrieved["offline_docs"] +
        knowledge_retrieved["online_docs"]
    )

    # Build prompt using agent's message constructor
    prompt_message = agent.message_constructor(
        dynamic_examples=retrieved_examples,
        dynamic_knowledge=retrieved_knowledge,
        image_list=image_string_list,
        control_info=control_info,
        prev_subtask=prev_subtask,
        plan=plan,
        request=request,
        subtask=subtask,
        current_application=application_process_name,
        host_message=host_message,
        blackboard_prompt=blackboard_prompt,
        last_success_actions=last_success_actions,
    )

    return prompt_message

LLM Response Parsing:

def _parse_app_response(self, agent, response_text: str) -> AppAgentResponse:
    """Parse LLM response into structured AppAgentResponse."""
    response_dict = agent.response_to_dict(response_text)
    parsed_response = AppAgentResponse.model_validate(response_dict)
    return parsed_response

AppAgentResponse Schema:

{
    "Observation": "Word document with Export button at label [12]",
    "Thought": "I should click Export to extract table data",
    "ControlLabel": "12",
    "ControlText": "Export",
    "Function": "click_input",
    "Args": {"button": "left", "double": false},
    "Status": "SCREENSHOT",
    "Plan": ["Click Export", "Select CSV format", "Choose save location"],
    "Comment": "Clicking Export will open a dialog",
    "SaveScreenshot": {"save": false, "reason": ""}
}

Retry Logic

LLM interaction includes automatic retry (configurable, default 3 attempts) to handle transient failures or JSON parsing errors.


Phase 3: ACTION_EXECUTION

Strategy: AppActionExecutionStrategy

Purpose: Execute UI actions on selected controls based on LLM response.

@depends_on("parsed_response", "log_path", "session_step")
@provides(
    "execution_result",
    "action_info",
    "control_log",
    "status",
    "selected_control_screenshot_path",
)
class AppActionExecutionStrategy(BaseProcessingStrategy):
    """Strategy for executing App Agent actions."""

    async def execute(self, agent, context) -> ProcessingResult:
        # 1. Extract parsed response
        parsed_response = context.get_local("parsed_response")

        # 2. Execute the action via command dispatcher
        execution_results = await self._execute_app_action(
            command_dispatcher,
            parsed_response.action
        )

        # 3. Create action info for memory
        actions = self._create_action_info(
            annotation_dict,
            parsed_response.action,
            execution_results,
        )

        # 4. Save annotated screenshot with selected control highlighted
        self._save_annotated_screenshot(...)

        return ProcessingResult(success=True, data={...})

Execution Flow:

sequenceDiagram participant Strategy participant CommandDispatcher participant Application participant Photographer Strategy->>Strategy: Extract action from parsed_response Note over Strategy: ControlLabel: "12"<br/>Function: "click_input"<br/>Args: {"button": "left"} Strategy->>Strategy: Convert action to Command Note over Strategy: Command(tool_name="click_input",<br/>parameters={"id": "12", "button": "left"}) Strategy->>CommandDispatcher: execute_commands([command]) CommandDispatcher->>Application: Perform UI automation Application-->>CommandDispatcher: Result (status, message) CommandDispatcher-->>Strategy: execution_results Strategy->>Strategy: Create action_info<br/>(merge control, action, result) Strategy->>Strategy: Print action to console Strategy->>Photographer: Save screenshot with selected control Photographer-->>Strategy: selected_control_screenshot_path

Action to Command Conversion:

def _action_to_command(self, action: ActionCommandInfo) -> Command:
    """Convert ActionCommandInfo to Command for execution."""
    return Command(
        tool_name=action.function,  # e.g., "click_input"
        parameters=action.arguments or {},  # e.g., {"id": "12", "button": "left"}
        tool_type="action",
    )

Action Info Creation:

def _create_action_info(
    self,
    annotation_dict,
    actions,
    execution_results,
) -> List[ActionCommandInfo]:
    """Create action information for memory tracking."""

    # Handle single or multiple actions
    if isinstance(actions, ActionCommandInfo):
        actions = [actions]

    # Merge control info with action results
    for i, action in enumerate(actions):
        if action.arguments and "id" in action.arguments:
            control_id = action.arguments["id"]
            target_control = annotation_dict.get(control_id)
            action.target = target_control  # Link to TargetInfo

        action.result = execution_results[i]  # Link to execution result

    return actions

Example Action Execution:

Input: ControlLabel="12", Function="click_input", Args={"button": "left"}
↓
Command: Command(tool_name="click_input", parameters={"id": "12", "button": "left"})
↓
Execution: Click control [12] (Export button) with left mouse button
↓
Result: ResultStatus.SUCCESS, message="Clicked control successfully"
↓
Action Info: ActionCommandInfo(
    function="click_input",
    target=TargetInfo(name="Export", type="Button"),
    result=Result(status=SUCCESS),
    action_string="click_input on [12]Export"
)

Error Handling

Action execution uses fail_fast=False, allowing graceful handling of failures. Failed actions are logged but don't halt the pipeline.


Phase 4: MEMORY_UPDATE

Strategy: AppMemoryUpdateStrategy

Purpose: Record execution history in agent memory and update shared Blackboard.

@depends_on("session_step", "parsed_response")
@provides("additional_memory", "memory_item", "updated_blackboard")
class AppMemoryUpdateStrategy(BaseProcessingStrategy):
    """Strategy for updating App Agent memory and blackboard."""

    async def execute(self, agent, context) -> ProcessingResult:
        # 1. Create additional memory data
        additional_memory = self._create_additional_memory_data(agent, context)

        # 2. Create and populate memory item
        memory_item = self._create_and_populate_memory_item(
            parsed_response,
            additional_memory
        )

        # 3. Add memory to agent
        agent.add_memory(memory_item)

        # 4. Update blackboard
        self._update_blackboard(agent, save_screenshot, ...)

        # 5. Update structural logs
        self._update_structural_logs(context, memory_item)

        return ProcessingResult(success=True, data={...})

Execution Flow:

sequenceDiagram participant Strategy participant Memory participant Blackboard participant Logs Strategy->>Strategy: Create additional_memory<br/>(step, cost, actions, results) Strategy->>Strategy: Create memory_item<br/>(merge response + additional data) Strategy->>Memory: agent.add_memory(memory_item) Memory-->>Strategy: Memory updated alt save_screenshot=True Strategy->>Blackboard: add_image(screenshot, metadata) Blackboard-->>Strategy: Image saved end Strategy->>Blackboard: add_trajectories(memorized_action) Blackboard-->>Strategy: Trajectories updated Strategy->>Logs: Update structural logs Logs-->>Strategy: Logs updated

Memory Item Creation:

def _create_and_populate_memory_item(
    self,
    parsed_response: AppAgentResponse,
    additional_memory: AppAgentProcessorContext,
) -> MemoryItem:
    """Create and populate memory item."""
    memory_item = MemoryItem()

    # Add LLM response data
    if parsed_response:
        memory_item.add_values_from_dict(parsed_response.model_dump())

    # Add additional context data
    memory_item.add_values_from_dict(additional_memory.to_dict(selective=True))

    return memory_item

Additional Memory Data:

def _create_additional_memory_data(self, agent, context):
    """Create additional memory data for App Agent."""
    app_context = AppAgentProcessorContext()

    # Action information
    action_info = context.get("action_info")
    if action_info:
        app_context.function_call = action_info.get_function_calls()
        app_context.action = action_info.to_list_of_dicts()
        app_context.action_success = action_info.to_list_of_dicts(success_only=True)
        app_context.action_type = [action.result.namespace for action in action_info.actions]
        app_context.action_representation = action_info.to_representation()

    # Step information
    app_context.session_step = context.get_global("SESSION_STEP", 0)
    app_context.round_step = context.get_global("CURRENT_ROUND_STEP", 0)
    app_context.round_num = context.get_global("CURRENT_ROUND_ID", 0)
    app_context.agent_step = agent.step

    # Task information
    app_context.subtask = context.get("subtask", "")
    app_context.request = context.get("request", "")
    app_context.app_root = context.get("app_root", "")

    # Cost and results
    app_context.cost = context.get("llm_cost", 0.0)
    app_context.results = context.get("execution_result", [])

    return app_context

Blackboard Update:

def _update_blackboard(
    self,
    agent,
    save_screenshot,
    save_reason,
    screenshot_path,
    memory_item,
    application_process_name,
):
    """Update agent blackboard with screenshots and actions."""

    # Add action trajectories
    history_keys = ufo_config.system.history_keys
    if history_keys:
        memory_dict = memory_item.to_dict()
        memorized_action = {
            key: memory_dict.get(key)
            for key in history_keys
            if key in memory_dict
        }
        if memorized_action:
            agent.blackboard.add_trajectories(memorized_action)

    # Add screenshot if requested
    if save_screenshot:
        metadata = {
            "screenshot application": application_process_name,
            "saving reason": save_reason,
        }
        agent.blackboard.add_image(screenshot_path, metadata)

Memory Item Example:

{
    "observation": "Word document with Export button at [12]",
    "thought": "Click Export to extract table",
    "control_label": "12",
    "function_call": ["click_input"],
    "action": [{"function": "click_input", "target": {...}, "result": {...}}],
    "action_success": [{"action_string": "click_input on [12]Export", ...}],
    "status": "SCREENSHOT",
    "plan": ["Click Export", "Select CSV", "Save file"],
    "cost": 0.0023,
    "session_step": 5,
    "round_step": 2,
    "subtask": "Extract table from Word document",
}

Selective Memory

The history_keys configuration controls which fields are added to Blackboard trajectories. This prevents information overload while maintaining essential context for cross-agent communication.


Complete Execution Example

Single Action Cycle

sequenceDiagram participant AppAgent participant DC as DATA_COLLECTION participant LLM as LLM_INTERACTION participant AE as ACTION_EXECUTION participant MU as MEMORY_UPDATE participant Application rect rgb(230, 240, 255) Note over AppAgent, DC: Phase 1: Data Collection AppAgent->>DC: Start processing DC->>Application: capture_window_screenshot() Application-->>DC: clean_screenshot_url DC->>Application: get_app_window_controls_target_info() Application-->>DC: 50 controls detected DC->>DC: Annotate screenshot [1] to [50] DC-->>AppAgent: Screenshots + Controls ready end rect rgb(255, 250, 230) Note over AppAgent, LLM: Phase 2: LLM Interaction AppAgent->>LLM: Process with controls + images LLM->>LLM: Build prompt (RAG + history) LLM->>LLM: Get LLM response LLM->>LLM: Parse JSON response LLM-->>AppAgent: Action: click_input([12], left) end rect rgb(230, 255, 240) Note over AppAgent, AE: Phase 3: Action Execution AppAgent->>AE: Execute action AE->>Application: click_input(id="12") Application-->>AE: SUCCESS: Clicked Export button AE->>AE: Create action_info AE-->>AppAgent: Action completed end rect rgb(255, 240, 245) Note over AppAgent, MU: Phase 4: Memory Update AppAgent->>MU: Update memory MU->>MU: Create memory_item MU->>MU: Add to agent.memory MU->>MU: Update blackboard MU-->>AppAgent: Memory updated end

Error Handling

Fail-Fast vs Graceful

# DATA_COLLECTION: fail_fast=True
# Critical failure stops pipeline immediately
try:
    result = await screenshot_strategy.execute(agent, context)
except Exception as e:
    # Propagate immediately - cannot proceed without screenshots
    raise ProcessingError(f"Data collection failed: {e}")

# ACTION_EXECUTION: fail_fast=False
# Failures are logged but don't stop pipeline
try:
    result = await action_strategy.execute(agent, context)
except Exception as e:
    # Log error, return partial result, continue to memory phase
    logger.error(f"Action execution failed: {e}")
    return ProcessingResult(success=False, error=str(e), data={})

Retry Mechanisms

LLM Interaction Retry:

async def _get_llm_response(self, agent, prompt_message):
    """Get response from LLM with retry logic."""
    max_retries = ufo_config.system.json_parsing_retry  # Default: 3

    for retry_count in range(max_retries):
        try:
            # Run LLM call in thread executor to avoid blocking
            loop = asyncio.get_event_loop()
            response_text, cost = await loop.run_in_executor(
                None,
                agent.get_response,
                prompt_message,
                AgentType.APP,
                True,  # use_backup_engine
            )

            # Validate response can be parsed
            agent.response_to_dict(response_text)
            return response_text, cost

        except Exception as e:
            if retry_count < max_retries - 1:
                logger.warning(f"LLM retry {retry_count + 1}/{max_retries}: {e}")
            else:
                raise

Performance Optimization

Composed Strategy Benefits

# Sequential execution with shared context
self.strategies[ProcessingPhase.DATA_COLLECTION] = ComposedStrategy(
    strategies=[
        AppScreenshotCaptureStrategy(),  # Provides: screenshots, window_info
        AppControlInfoStrategy(),        # Depends on: screenshots, window_info
    ],
    name="AppDataCollectionStrategy",
    fail_fast=True,
)

Benefits:

  • Context Sharing: Screenshot output immediately available to Control Info strategy
  • Atomic Failure: If screenshot fails, control detection is skipped
  • Performance: Avoids redundant window queries

Dependency Injection

@depends_on("clean_screenshot_path", "application_window_info")
@provides("control_info", "annotation_dict", "annotated_screenshot_url")
class AppControlInfoStrategy(BaseProcessingStrategy):
    # Automatically receives dependencies from previous strategies
    pass

Benefits:

  • Type-safe dependency declaration
  • Automatic data flow between strategies
  • Easy to add new strategies without refactoring

Architecture:

Core Features:

Design Patterns:


Summary

AppAgent Processing Pipeline Key Features:

4-Phase Pipeline: DATA_COLLECTION → LLM_INTERACTION → ACTION_EXECUTION → MEMORY_UPDATE
Composed Strategy: Phase 1 combines Screenshot + Control Info strategies
Multi-Backend Control Detection: UIA + OmniParser with hybrid merging
Knowledge-Enhanced Prompting: RAG integration from docs, demos, and search
Retry Logic: Automatic LLM retry with configurable attempts
Memory & Blackboard: Comprehensive execution tracking and inter-agent communication
Graceful Error Handling: fail_fast configuration per phase

Next Steps:

  1. Study Commands: Read Command System for MCP command details
  2. Explore States: Review State Machine for FSM that invokes pipeline
  3. Learn Patterns: Check Processor Framework for architecture details