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Abstract

This paper presents a novel approach for pretraining robotic manipulation Vision-Language-
Action (VLA) models using a large corpus of unscripted real-life video recordings of human
hand activities. Treating human hand as dexterous robot end-effector, we show that “in-
the-wild” egocentric human videos without any annotations can be transformed into data
formats fully aligned with existing robotic V-L-A training data in terms of task granularity
and labels. This is achieved by the development of a fully-automated holistic human activity
analysis approach for arbitrary human hand videos. This approach can generate atomic-level
hand activity segments and their language descriptions, each accompanied with framewise
3D hand motion and camera motion. We process a large volume of egocentric videos and
create a hand-VLA training dataset containing 1M episodes and 26M frames. This training
data covers a wide range of objects and concepts, dexterous manipulation tasks, and en-
vironment variations in real life, vastly exceeding the coverage of existing robot data. We
design a dexterous hand VLA model architecture and pretrain the model on this dataset.
The model exhibits strong zero-shot capabilities on completely unseen real-world observa-
tions. Additionally, fine-tuning it on a small amount of real robot action data significantly
improves task success rates and generalization to novel objects in real robotic experiments.
We also demonstrate the appealing scaling behavior of the model’s task performance with
respect to pretraining data scale. We believe this work lays a solid foundation for scalable
VLA pretraining, advancing robots toward truly generalizable embodied intelligence.

1 Introduction

Pretraining on large, generic data is the key for models to acquire commonsense knowledge and achieve
domain generalization. While the pretraining of Large Language Models (LLM) and Vision Language Models
(VLM) has seen remarkable success [1, 13, 52, 81], pretraining Vision-Language-Action (VLA) models for
dexterous hand manipulation remains largely underexplored.

Existing Vision-Language-Action data for robotic manipulation are typically collected in laboratory settings
through human teleoperations [14, 28, 44, 63, 109]. Although such robot action data is invaluable, its high
acquisition cost significantly limits both the scale of the collected data and its diversity in skills, object
categories, and scene variations. Consequently, current V-L-A datasets lag far behind the Internet-scale
language and VL data in terms of quantity and diversity, and they fall short of representing the complexity
required for real-world robotic tasks. The V-L-A data for dexterous robot hands is even more scarce; to our
knowledge there are no large-scale dexterous hand action datasets available for pretraining.

∗ Equal contribution. † Intern work done at Microsoft Research Asia. ‡ Corresponding author.
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Figure 1: We present a pretraining approach for robotic Vision-Language-Action (VLA) models by trans-
forming unstructured real-life videos of human activity into structured V-L-A formats aligned with existing
robot data. The pretrained model demonstrates strong zero-shot hand action prediction in unseen environ-
ments and can be effectively fine-tuned with dexterous robot hand data for real-world tasks, showing robust
generalization to new objects and environments.

Meanwhile, there is a vast amount of real-life human videos on the web, containing rich examples of everyday
human actions and physical interactions with diverse environments. These videos are typically unstruc-
tured: they come unscripted and unsegmented, vary in length and task granularity, contain noisy and
irrelevant actions, and lack language instruction and 3D action labels. Although there have been numerous
interests in utilizing human video for robot learning [4, 8, 21, 38, 56, 61, 69, 76, 84, 92, 98, 101], no ex-
isting approaches leverage large-scale, unstructured videos without any human annotation for VLA model
pretraining. This leads to a critical question: can we transform these unstructured videos into data
formats fully aligned with existing robotic V-L-A training data?

This work is the first to address this question, and we provide an affirmative answer. For unstructured human
videos, we consider human hand as robot end-effector and seek to achieve two types of alignment with real
robot V-L-A data. 1) Task alignment: we need meaningful segmentation and filtering of atomic-level human
action sequences (short-horizon tasks), adhering to the recipe of existing robot data. This problem is closely
related to temporal action segmentation from videos, which remains an open problem and there are no
existing methods that meet our needs. 2) Label alignment: we need to recover metric-space 3D hand motion
accurately to the extent possible1 to provide dense action labels. This is difficult as we often work with
single, uncalibrated, and likely moving cameras. Additionally, we need precise language instruction labels to
describe the actions.

1While it’s ideal to have 3D motion labels as accurate as possible, we believe some noise and imperfection are acceptable
for pretraining, where the goal is to grasp common knowledge, learn motion patterns for diverse skills, and experience a wide
spectrum of object and scene variations.
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To this end, we introduce a holistic human activity analytic framework that converts any human hand activity
video of arbitrary length into multiple V-L-A trajectories of dexterous manipulation. It is a fully-automatic
approach requiring no human intervention. In this framework, we first develop a monocular 3D camera
and hand pose tracking approach leveraging recent advancements in 3D vision community, particularly
deep visual SLAM, depth estimation, and hand reconstruction. The outputs include the camera FoV, the
framewise camera pose, and the framewise hand pose (based on the 6D wrist pose and full joint angles).
For temporal atomic action segmentation, we propose a simple yet surprisingly effective algorithm based on
the hand movement speed in the 3D space, obtained from the recovered 3D motion labels. Finally, for each
segmented video clip, we visualize hand trajectories on sampled video frames and prompt VLM to determine
whether the action constitutes meaningful manipulation and, if so, describe it in natural language.

One significant advantage of real-life video data is the inherent action diversity and scene variation it offers.
As a starting point, we process a large volume of raw videos from existing egocentric human video datasets.
The resultant hand V-L-A dataset contains about 1 million episodes and 26 million frames, This dataset
captures a broad spectrum of objects, concepts, skills, and environmental variations, vastly exceeding the
coverage of existing robot data as shown in our analysis. We also develop a dexterous hand VLA model
architecture with a Causal Action Transformer and pretrain the model on this dataset. The model exhibits
strong zero-shot capabilities on observations of completely new scenes, a level of performance not seen in
any prior method. We conduct real-world robot experiments and show that fine-tuning the model on a
small amount of real robot hand data significantly improves task success rates and generalization to novel
objects and backgrounds. Furthermore, our experiments show a clear scaling behavior of task performance
with respect to pretraining data scale.

Our work stands distinct from prior research that utilizes human video for training robotic manipulation
models. The approaches that leverage egocentric human video for learning vision and language represen-
tations, affordances, point trajectories, etc. [4, 38, 56, 61, 92, 98], did not explore action pretraining for
VLA models. Recent works that use latent actions from human videos [8, 21, 101] for pretraining do not
provide explicit 3D action labels as we do. Our experiments demonstrate the superiority of our pretraining
approach. Most recently, a few works that are concurrent to ours studied training VLA models with explicit
3D hand motions similar to ours [7, 55, 100], but their data is largely limited to scripted laboratory captures;
a detailed discussion is provided in the next section.

Our approach offers a more tractable way for pretraining data scaling compared to existing techniques. Al-
though this work uses videos from existing egocentric video datasets, there are no technical barriers pre-
venting further data scaling. By not imposing constraints on the subjects’ activities or environments and
requiring only a single webcam, every life recorder can effectively become a robot teacher. We envision a
future where robots can effectively learn from abundant, low-cost human video demonstrations to acquire
diverse skills, complemented by targeted fine-tuning using a modest amount of real robot data or reinforce-
ment learning. Our training dataset and pretrained VLA models will be open-sourced to the community to
facilitate further research.

2 Related Works

Robotic VLA Model Pretraining Robotic VLA models [9, 12, 39, 48, 49, 53, 63, 72, 83, 89, 90, 109]
that can perform diverse language-instructed tasks typically need pretraining on large data. Incorporating
VL-pretrained modules or backbones has been a common practice for VLA models, and here we focus
on a brief overview of the pretraining with regard to the action modality or its proxy. Most recent VLA
models with action pretraining [9, 39, 46, 48, 63, 72, 83] have leveraged the Open X-Embodiment (OXE)
dataset [63], which contains over 1M real robot trajectories collected on over twenty robots. This large-
scale dataset provides diverse skills and environment variations well suited for pretraining. Some of these
works [9, 39, 53, 72] also incorporate more open-source or in-house robot action data in addition to OXE.
The work of [27] synthesized a large volume of V-L-A data in simulators for pretraining, but it handles the
grasping task only. A line of works [8, 14, 15, 21, 101] studied learning latent action from human and/or robot
videos in an unsupervised manner and pretraining models using the extracted latents as the proxy for action.
Some other works propose to use the future frames in videos as the prediction target for pretraining [17, 91].
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There are some recent attempts concurrent to ours which use 3D hand action labels of egocentric hu-
man videos for VLA pretraining [7, 55, 100]. They primarily use hand-object interaction videos captured
in controlled environments with privileged information. For example, the videos are well segmented to
language-instructed action clips since the tasks are pre-scripted, and 3D hand motions are typically obtained
with advanced devices (e.g., RGBD sensors, VR/AR headsets). We focus on a different goal, i.e., harness-
ing unscripted real-life human videos for large-scale pretraining, which encompass a significantly broader
range of tasks, objects, and real-world environments. This greatly enhances the zero-shot action perdition
performance. Furthermore, their casual capture nature facilitates much greater scalability.

Dexterous Hand Manipulation Dexterous manipulation with multi-fingered robot hands has been a
vibrant area of research for decades. Earlier learning-based models with visual inputs were typically trained
with reinforcement learning in simulators [2, 3, 22]. However, training dexterous RL policies requires sophisti-
cated reward design and their applicability in real-world scenarios is often limited. Using human teleoperated
demonstrations for imitation learning was also widely used to improve task performance [40, 73]. Methods
that utilize human hand motion as demonstration data [34, 43, 64, 69, 71, 84, 85] were also actively stud-
ied. These previous works typically address a single or small set of tasks for a trained model. Recently,
language instruction has been incorporated into dexterous hand manipulation models to handle more tasks
with diverse objects [26, 38, 108].

Robot Learning from Human Videos Exploiting human videos to train robotic models has been
actively studied in recent years. Several studies [56, 61, 92, 96] leverage egocentric human videos for learn-
ing vision and language representations. Some methods use explicit human actions extracted from mocap
videos [23, 24, 43, 69, 71, 84] or web videos [65, 76] to guide robot policy training with imitation learning
frameworks. Instead of using explicit motions, other approaches learn affordances [4, 19, 42, 57], point
trajectories [6, 88, 98], or hand-object masks [78] from human videos. Recently, a group of methods have
emerged which learn latent actions from human videos in an unsupervised manner and pretrain action model
with latent action labels [8, 16, 21, 101, 107]. Some recent attempts use extracted 3D hand action labels
from egocentric human videos for VLA pretraining [7, 55, 100]. As mentioned earlier, these primarily involve
videos captured in controlled environments with privileged information. In a different vein, some approaches
utilize human videos to train video generation models for human-to-robot video transfer [93, 95], visual task
planning [5, 38], or world models [21, 41, 59].

Temporal Action Segmentation for Videos Temporal action segmentation, also known as temporal
action detection or localization, is a technique for detecting action windows and classifying them from a long
human video. Earlier approaches [29, 51, 77, 86, 104] have focused on predefined action classes. Recently,
video-input VLMs [18, 20] with broad action understanding capabilities are proposed but they still face
challenges in action localization accuracy. They do not meet our requirements in our preliminary tests.

3 Transforming Human Hand Video to VLA Data

Existing robotic manipulation V-L-A data [14, 28, 44, 63, 109] typically comprise simple, short-horizon tasks
(e.g., “pick up the sponge on table”, “wipe the stove with cloth”), which can be composed to long-horizon
tasks by a high-level planner. Each data episode comprises a language instruction, a video frame sequence,
and frame-aligned 3D action chunks of the end-effector in the robot or camera coordinate system. Our
approach analyzes an unscripted human video and generates V-L-A data in such format, treating the two
human hands as the end-effector. The whole framework comprises three stages and an overview is shown in
Fig. 2.

3.1 3D Motion Labeling

The first stage of our approach extracts 3D motions from videos, including the motions of two hands and
the camera. To achieve this, we first apply a simple algorithm to determine whether the camera is static
or moving based on background optical flow. Then we estimate camera intrinsics of the videos by applying
DroidCalib [33] for moving cameras and MoGe-2 [87] and DeepCalib [11] for static cameras. The videos with
large distortions are then undistorted to conform to the pinhole camera model. Given the intrinsics and
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Figure 2: Overview of our holistic human activity analysis framework, which transforms unscripted real-life
human videos into V-L-A episodes of human hands aligned with typical robotic data via three stages: (a) 3D
motion labeling, reconstructing metric-scale 3D hand and camera trajectories; (b) atomic action segmenta-
tion, dividing videos into atomic-level clips; and (c) instruction labeling, employing GPT to annotate action
instructions for each clip.

undistorted video, we proceed with video hand reconstruction and camera pose tracking. For the former, we
employ HaWoR [105] to reconstruct per-frame camera-space 3D hands. Each reconstructed hand contains
wrist 6D pose and joint angles represented with the MANO [75] hand parametric model. To track camera
pose for moving cameras, we apply a modified version of MegaSAM [50], in which we replace the depth
estimation model providing depth priors for visual SLAM with MoGe-2 [87]. Then we can obtain a sequence
of world-space 3D hands by combining the camera-space 3D hands and metric-scale camera poses. Finally,
we apply spline smoothing to the world-space hand motions and remove outliers. More details can be found
in Appendix A.1.

The world-space 3D hand sequence can be easily transformed into any video frame’s camera space, effectively
simulating a static camera as in most robot data. Moreover, it facilitates both the subsequent atomic action
segmentation and instruction labeling, as will be described later. To enhance efficiency, we chop long videos
into overlapping 20-second clips in this stage and recompose their results.

3.2 Atomic Action Segmentation

This stage aims to segment out simple, atomic-level hand action sequences from a long video, in line with
the granularity and time windows of robotic V-L-A data. This is not a straightforward task and there’s no
off-the-shelf models that can be applied to this problem reliably. Our solution is inspired by the natural
“beats” of human hand action in real life. Specifically, during action transitions, human hands typically
exhibit speed changes, with minima often indicating switches of action. This observation has inspired us to
leverage the recovered 3D hand motions and design the following algorithm which is simple yet surprisingly
effective: we detect speed minima of the 3D hand wrists in the world space and use them as cutting points.
We smooth the hand trajectory and select points that are local speed minima within a fixed window centered
on each point. Segmentation is applied for the left and right hands independently with the other hand’s
motion ignored. This way, each segment captures a single atomic action of at least one hand.

It is worth noting that this method is highly efficient and requires no additional model inference or pre-
annotated text labels, making it particularly effective for the scalable segmentation of hand activity videos.
Furthermore, segmenting atomic-level action clips can help reduce the complexity of subsequent instruction
captioning, as we discuss in a later section. This strategy may lead to over segmentation for certain actions
(e.g., consider a wiping action where a hand moves back and forth), but these actions can be easily merged
later after instruction labeling.
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3.3 Instruction Labeling

Given the video segments and 3D hand action sequences, we create visualizations and utilize GPT-4.1 [1]
for action captioning. From each segment, we evenly sample 8 frames and highlight hand trajectories on
each frame by projecting the world-space trajectory of the hand palm from the current frame to the end of
the clip (see Fig. 2 for an example). These frames are then fed into GPT, which is prompted to describe
the specified hand’s action in imperative form, taking into account both the content of the frames and the
overlaid trajectories. We also instruct GPT to label clips lacking semantically meaningful action as “N/A”.
A detailed description of the prompt design can be found in the Appendix A.1.

We empirically find that providing GPT with atomic-level video clips for captioning is effective in improving
annotation accuracy. By contrast, simply splitting the video into fixed-length segments (e.g., 1-second)
reduces accuracy, likely because each segment may still contain multiple atomic actions, which increases the
difficulty for GPT to reason about the content. Additionally, overlaying hand trajectories on the images is
also important for ensuring correct captioning, as evidenced by prior studies incorporating visual markers
as supplementary prompts [97].

3.4 Hand V-L-A Dataset Construction

Leveraging the above framework, we construct a large-scale human hand V-L-A dataset by processing ego-
centric human videos from Ego4D [31], Epic-Kitchen [25], EgoExo4D [32], and Something-Something-V2
(SSV2) [30]. Note that the human annotations for actions provided by these datasets are NOT used in this
work; instead, we process the raw videos through our framework. These annotations often do not match
the desired task granularity or they lack precise start and end times for actions. Later we’ll show in our
experiments that training using these annotations results in obvious performance degradation compared to
our approach. Our constructed dataset contains 1M episodes with 26M frames (77% from Ego4D, 12% from
Epic-Kitchen, 6% from EgoExo4D, and 5% from SSV2). It features diverse hand actions, objects, attributes,
and environments, encompassing real-life activities such as cooking, cleaning, construction, repairing, craft-
ing, and painting (Fig. 1). A more detailed analysis of the dataset will be presented in Sec. 5.1.

4 Dexterous Hand VLA Model

We construct a VLA model π for dexterous manipulation:

π : (l, ot, st) → (at, at+1, ..., at+N ), (1)

which predicts a sequence of future end-effector actions a based on the current visual observation ot, the
robot proprioceptive state st, and a language instruction l.

4.1 VLA Model Design

4.1.1 Model Architecture

An overview of our model architecture is presented in Fig. 3. Our model consists of a VLM backbone and a
diffusion action expert. We use PaliGemma-2 [80] as the VLM, which combines a SigLIP [102] vision encoder
with linear projection for alignment and a Gemma-2 [82] language model for multi-modal token processing.
We use the 3B-parameter model with an input image resolution of 2242 as the default setting. We further
incorporate camera FoV information as an extra token to the model to help it better interpret the original
image’s aspect ratio and camera intrinsics. Following [48], we append a learnable “cognition” token as extra
input to the VLM, whose output feature f c serves as the condition for the action expert.

For the action expert, we apply a Diffusion Transformer (DiT) [67] and the DiT-Base model is used by
default. The input is a concatenation of the cognition feature f c, the hand state st, and a noisy action chunk
(ai

t, ai
t+1, . . . , ai

t+N ), where i denotes the denoising step. The hand state includes the wrist translation and
rotation in camera space of the current image observation, as well as hand joint angles. A set of action
masks, indicating whether each action is valid, is also provided to the model and will be discussed in detail
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Figure 3: Our VLA model architecture. It consists of a VLM backbone and a diffusion action expert. The
VLM receives visual and linguistic instructions, as well as the camera FoV, and outputs a cognition feature
that guides the action expert for future action chunk prediction. The action expert additionally receives the
current state of the end effector and valid action masks for iterative action denoising via causal attention.

later. We additionally inject the cognition feature into the DiT using AdaLN [67] for enhanced conditioning.
The action expert predicts the added noise for iterative denoising, trained by optimizing an MSE loss:

LMSE = Eϵ∼N (0,1),i||ϵ̂i − ϵ||2, (2)

where ϵ̂i and ϵ denote the predicted and ground-truth noise, respectively. The action expert, the VLM, and
the cognition token are trained end-to-end, while the vision encoder remains frozen. See Appendix A.2 for
more implementation details.

4.1.2 Hand Action Space

Our model predicts hand actions in the camera coordinate frame of the current observation ot. At time step
t, the hand action at is defined as:

at = [∆tl, ∆rl, θl
h, ∆tr, ∆rr, θr

h] ∈ R102, (3)

where ∆t ∈ R3 and ∆r ∈ R3 are the relative wrist translation and rotation (Euler angles converted from
rotation matrices) between the consecutive frames, and θh ∈ R15×3 represents the Euler angles of 15 joints
in the local frame of the MANO hand model (see Fig. 8b for an illustration). Superscripts l and r indicate
the left and right hand, respectively.

4.1.3 Unified Single- and Dual-Hand Action Prediction

Our VLA pretraining data is at the level of single-hand atomic actions, with some episodes containing over-
lapping dual-hand actions. We introduce the following designs to handle different cases in a unified manner.
Specifically, the VLM always receives language instructions in the format of Left hand: <left-hand
action>. Right hand: <right-hand action>. For a video frame ot, left- and right-hand action de-
scriptions are set to either None or the instructions of the corresponding atomic action chuck ot falls within.
Meanwhile, the action expert always receives noisy hand actions for both hands. To account for episodes
where action labels are available for only one hand, extra action masks (0 or 1), matching the dimensionality
of the hand actions, are concatenated with the noisy actions along the feature dimension as input to the
action expert (see Fig. 3). When a mask value is 0, the corresponding noisy action is set to 0 and excluded
from the loss computation.

4.1.4 Causal Action Denoising

Human hands move fast in real life activities, and many of the action clips in our pretraining dataset are as
short as 1 second (∼30 frames). Consequently, many prediction chunks of the VLA model go beyond the
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episode end for a reasonable chunk length (e.g., N = 16 in our setting). Naively padding with zero actions at
the end can be problematic, as many atomic actions occur mid-task and should not conclude with no motion
(e.g., a wiping task with a hand moving back and forth). To address this issue, we employ causal attention
for action denoising, ensuring that the token of each action step only attends to preceding actions. This
prevents zero-padded positions from affecting earlier predictions, unlike in the bidirectional attention setting.
Furthermore, these padded positions are also excluded from the loss computation with their corresponding
action masks set to 0.

4.2 Pretraining with Human Hand VLA Data

We first train the VLA model for human hand action prediction using the dataset constructed in Sec. 3.4.
During training, we apply trajectory-aware augmentation to the training images and actions to enhance
generalization. Specifically, input images are randomly cropped and perspective-warped with varying FoV,
aspect ratio, and crop center, while keeping the principal point at the image center. The action sequences are
transformed accordingly to match the augmented camera parameters. During random cropping, we ensure
that the projected hand trajectory from the current frame to episode end remains within the cropped image.
Using this strategy, the objects of interaction are also mostly well-contained. We also apply random image
flipping and make corresponding adjustments to hand actions and language instructions. Random color
jittering is further applied when the text description does not contain explicit color cues.

4.3 Fine-tuning for Robotic Dexterous Manipulation

After pretraining, the model can be fine-tuned on robot data for deployment. We consider the human hand
action space as a superset of that of the robot hand and align the robot’s action space with the human hand’s
as defined in Eq. (3). Specifically, robot end-effector 6D poses in camera coordinates are used to compute
∆t and ∆r. For joint angles, a simple mapping strategy is applied: each joint of robot hand is mapped to its
closest human joint in topology, and the corresponding dimension in human action θh is used for fine-tuning
(an example is shown in Fig. 8b). Unmapped dimensions in θh are zero-padded in the action mask. In
addition, we supervise the model with direct future execution commands for the hand joints, instead of
using action labels derived from the recorded robot states. This approach produces more plausible hand
motions during hand-object interactions. The language instruction format is kept consistent with those used
during pretraining.

A Remark. Action space mapping between human hand and dexterous robot hand have been actively studied
in the past [34, 71, 85]. In this work we do not perform direct pose transfer (as done in teleoporation) and
our fine-tuning can help mitigate the action space differences. Other strategies can also be employed and we
leave it as our future work.

5 Experiments

Training Details. For pretraining, we first warm up the action expert, the mapping layers of the cognition
token, and the MLP projecting FoV for 5K steps. Then we jointly fine-tune the VLM backbone and action
expert for 80K steps. The learning rates are 1e-4 and 1e-5 for the action expert and VLM, respectively, with
a batch size of 512. The pretraining stage takes 2 days on 8 NVIDIA H100 GPUs. For fine-tuning on real
robot data, we optimize the model for 20K steps with a batch size of 256 and a learning rate of 1e-5, which
takes 8 hours with 8 NVIDIA H100 GPUs. More details can be found in Appendix A.3.

5.1 Pretraining Data Analysis

An overview of our pretraining data is shown in Fig. 1. We visualize the most frequent words in the language
instructions using word clouds, and showcase randomly-sampled task environments. More examples of the
dataset can be found in the Appendix C.1. To further investigate data diversity, we conduct a detailed
analysis of the visual observations and language instructions in the dataset, as described below.
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Figure 4: Visual diversity across VLA datasets. (a) Image feature similarity with OpenImages [47] as the
number of episodes varies. ⋆ marks the full dataset’s similarity. (b) t-SNE visualization of image features.
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Figure 5: Language instruction statistics across different VLA datasets.

5.1.1 Visual Diversity

The diversity of visual observations and their coverage of natural scenes are crucial for enhancing the model’s
generalization ability in real-world scenarios. To quantify the diversity and coverage of our dataset, we use
the OpenImages [47] dataset as a reference and compute the similarity between our dataset and it, as
OpenImages spans a broad spectrum of real-world scenes and is known to be highly diverse [94]. Specifically,
we randomly sample 8K images from OpenImages as queries and extract their features using the DINOv2 [62]
encoder. For each query feature, we compute its maximum cosine similarity to our dataset, where the target
features are extracted from the first frame of each episode in the dataset. We use the average of the maximum
cosine similarities for all query features as a measure of dataset diversity. Higher similarity values indicate
that the dataset covers a larger portion of real-world scenes represented in OpenImages.

Figure 4a presents the similarity curve as a function of the number of episodes, where we randomly sample
varying numbers of episodes from the dataset and compute feature similarity as described above. We also
report R@0.5, i.e., the fraction of OpenImages queries with a maximum similarity above 0.5 to the target
dataset features. We compare our dataset with existing VLA datasets, including EgoDex [37], a human-hand
VLA dataset of over 300K episodes collected in lab environments, and widely-used robotic VLA datasets:
Open X-Embodiment (OXE)2 [63], DROID [44], and AgiBot World beta [14]. As shown in the figure,
our dataset exhibits higher similarity to the OpenImages dataset, indicating greater diversity and broader
coverage of real-world scenes. Even when sampling a small subset of our dataset (10K episodes), its diversity

2We use a subset comprising approximately 400K episodes widely used for VLA pretraining, following [45, 48].
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Figure 6: Examples of environments used in hand action prediction evaluation.

already surpasses that of the other datasets. In addition, the diversity of visual observations can be further
increased by leveraging the augmentation strategies described in Sec. 4.2. Moreover, our similarity increases
more rapidly with the number of episodes (i.e., with a steeper slope), indicating a more uniform coverage of
real-world scenes, in contrast to the fragmented distribution observed in OXE [94]. The t-SNE visualization
of image features in Fig. 4b also aligns with the observations.

5.1.2 Instruction Diversity

The diversity of language instructions is also important for the model to perform a wide range of tasks.
To fairly compare datasets with varying instruction formats, we employ GPT-4.1 to extract nouns, verbs,
and adjectives from each instruction and analyze their distributions separately. Figure 5 illustrates the re-
lationship between the number of distinct words and their frequency of occurrence. A dataset with high
diversity should contain a large number of distinct words, each appearing with sufficient frequency. Accord-
ingly, curves positioned closer to the upper-right corner indicate a higher degree of instruction diversity.
As illustrated, our dataset demonstrates a significantly higher degree of diversity than existing human and
robot VLA datasets. Additionally, we compute the h-index and i100-index for the words, where the h-index
represents the largest number h such that at least h words appear at least h times, and the i100-index counts
the number of words appearing at least 100 times. Our dataset achieves higher values on both metrics
compared to the other datasets.

5.2 Human Hand Action Prediction

In this section, we evaluate the performance of our pretrained VLA model for human hand action prediction
in unseen environments. We examine how action prediction performance is influenced by key factors such
as dataset composition, model architecture, training strategies, data construction strategies, and dataset
scale. We first introduce the benchmark used for evaluating hand action prediction, followed by a systematic
analysis of how each factor impacts performance.

5.2.1 Benchmark

We construct a benchmark under unseen real-life environments, consisting of two task types defined below:

Grasping We instruct the model to grasp objects in the scene. We capture RGB-D images from 47
unseen environments using Azure Kinect and annotate 396 objects with captions and segmented 3D point
clouds. Synthetic human hands are rendered onto the images at distances suitable for object grasping with a
single action chunk (see Fig. 6a for examples). We compute the minimum distance between predicted finger
trajectories and target object points (i.e., dhand-obj) to evaluate movement plausibility.
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Table 1: Evaluation and ablation study of hand action prediction for the pretrained model. Note that
Being-H0 [55] is a concurrent work to ours. See text for details.

Method Grasp General action
Avg./med. dhand-obj (cm) ↓ User Score ↑

Initial position 20.0 / 20.0 –
Being-H0 (8B) 19.1 / 18.4 0.15
Ablations

Lab data (EgoDex) 17.6 / 18.3 –
Human annotation 14.1 / 14.1 0.96
No augmentation 11.6 / 10.7 1.43
Bidirectional attention 9.3 / 7.2 1.69
Ours 8.8 / 6.2 1.91

Table 2: Ablation study on hand action prediction using
different episode construction strategies. †: Pretrained us-
ing a subset of 350K episodes for efficiency.

Method Grasp
Avg./med. dhand-obj (cm) ↓

Initial position 20.0 / 20.0
Ablations

Fixed-interval segmentation 10.5 / 8.8
No trajectory overlay 11.7 / 10.7
Ours† 9.9 / 8.1

Figure 7: Data scaling behavior on the
grasping task. The circle size indicates
the visual diversity of the data.

General Action For more general hand actions, quantitative metrics may not adequately capture the
plausibility or correctness of the predicted movements. To address this, we design a user study to evaluate
hand movements before and after contact across 117 unseen real-life environments captured with mobile
phones (see Fig. 1 and Fig. 6b). For each scene, we prompt the model with annotated instructions and
render predicted hand actions onto video frames. We ask 23 participants to rank the top-3 actions for 30
randomly selected scenes from the 117 environments. These actions will be assigned 3, 2, and 1 scores while
all others receive 0. We then report the average scores across participants to assess the plausibility of the
predicted actions.

More details of the benchmark can be found in Appendix B.

5.2.2 Performance Analysis

Comparison of Pretraining Data We first compare the performance of models trained with different
pretraining datasets to validate the effectiveness of our constructed data. We compared with several baselines
including a) Lab data, which replaces our VLA data with the EgoDex dataset captured in lab environments;
b) Human annotation, which uses human annotations in the original human video datasets described in
Sec. 3.4 for constructing VLA episodes (as mentioned previously, these annotations often do not match the
desired task granularity or there’s no precise start and end times); c) Being-H0 [55], a recent hand VLA
model pretrained on a large collection of scripted, laboratory human video data (as a reference).

Table 1 reports the quantitative results of different configurations on our constructed benchmark. For
grasping, we include the initial hand–object distance as a reference. For general action, the Lab data baseline
is not included because the model only predicts keypoints using labels provided by EgoDex. As shown, our
method consistently outperforms all baselines. Compared to models trained on EgoDex data, ours exhibit
much stronger generalizability. Being-H0, though pretrained on multiple lab datasets, still shows limited
performance. Moreover, training with the original human annotations also underperforms, as its temporal
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or granularity misalignment between text and actions weakens instruction following. Figure 1 further presents
visual results of our model’s hand action predictions in these unseen environments, demonstrating its strong
generalization to diverse scenarios. More visualization results can be found in Appendix C.2.

Influence of Model Design and Training Strategy We evaluate the efficacy of model and train-
ing designs by comparing with two alternatives: a) No augmentation, which discards the trajectory-aware
data augmentation during training; b) Bidirectional attention, which uses bidirectional attention for action
denoising in the diffusion action expert.

As shown in Tab. 1, removing data augmentation during training largely reduces performance. This obser-
vation is consistent with the findings in Fig. 4, where data augmentation is shown to play a crucial role in
enhancing the diversity of visual observations, which is essential for improving the model’s generalization
ability in unseen environments. In addition, replacing causal attention with bidirectional attention also
leads to a performance drop, highlighting the importance of this technique which better aligns with the
characteristics of our pretraining data.

Influence of Episode Construction Strategy Our framework segments unscripted human videos into
atomic action episodes and generates their language instructions by leveraging reconstructed 3D hand trajec-
tories. We compare our method with two baselines that omit the use of 3D hand trajectory guidance during
episode construction: a) Fixed-interval segmentation, which segments raw videos into non-overlapping clips
of 1 second instead of using speed minima as cutting points, and feeds the resulting clips to GPT for cap-
tioning; b) No trajectory overlay, which prompts GPT for action captioning without overlaying the projected
3D hand trajectory onto sampled frames. To improve efficiency, this ablation study is conducted on a subset
of 350K episodes from Ego4D.

Table 2 demonstrates the quantitative results on grasping tasks. Using fixed-interval segmentation for con-
structing VLA episodes during pretraining results in degraded performance, as this approach can include
multiple actions within a single clip, thereby increasing the difficulty for GPT to correctly interpret and
align the corresponding action captions. Similarly, removing the hand trajectory overlay during GPT cap-
tioning also results in a noticeable performance drop. This highlights the importance of leveraging 3D hand
trajectories as guidance in constructing VLA episodes.

Data Scaling Behavior We further investigate how the scale of training data influences hand action
prediction performance. We compare the model trained on the full dataset with those trained on sub-
sampled datasets at different ratios: 50%, 20%, 10%, and 1%.

Figure 7 presents the trend of performance on the grasping task with respect to the scale of the training data.
The size of the circles indicate visual diversity of the training data, as defined in Sec. 5.1.1. We also plot the
performance of model trained with EgoDex as a reference. As shown, the predicted hand-object distance
steadily decreases with increasing data scale, following an approximately linear trend on the log scale. In
addition, although EgoDex contains more episodes than our 20%, 10%, and 1% subsets, its performance still
lags significantly behind the models trained on our data. We attribute this mainly to its lower data diversity,
which limits its generalization ability in unseen scenarios.

5.3 Real-World Robot Dexterous Manipulation

In this section, we evaluate the performance of our VLA model fine-tuned on a small set of real robot
trajectories for dexterous manipulation tasks. We begin by describing the hardware system and the tasks
defined for real-robot evaluation, followed by a detailed analysis of our model’s performance and comparison
with prior methods.

5.3.1 Robot Setup

We use a Realman3 robot equipped with 12-DoF XHand4 dexterous hands and a RealSense head camera,
as shown in Fig. 8a. The robot is placed in a tabletop environment. The joint mapping between the XHand

3https://www.realman-robotics.com/rm75-b.html
4https://www.robotera.com/en/goods/2.html
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Figure 8: (a) Robot setup in our experiments. (b) Mapping between XHand and MANO, where joints sharing
the same index indicate correspondence; white color denotes joints without counterparts. (c) Teleoperation
hardware system used for robot data collection.

Unseen Categories

Seen Objects and BG Unseen Objects and BG

(a)

Unseen Categories

Seen Objects and BG Unseen Objects and BG

(b)

Figure 9: Fine-tuning objects/environment and unseen objects/background for real robot evaluation.

and a human hand for fine-tuning is illustrated in Fig. 8b. For real-robot data collection, we employ the
teleoperation system shown in Fig. 8c. It consists of two teleoperation arms matching the Realman arms’
topology for controlling end-effector 6D poses, and a pair of MANUS5 teleoperation gloves at the arm’s
end for controlling the dexterous hand joint angles. See Appendix A.5 for more details of the teleoperation
system.

5.3.2 Task Designs

We collected 1.2K teleoperated trajectories for four tasks: i) General pick & place – moving an object into a
box with 3–4 random distractors; ii) Functional grasping – grasping an object at a functional location (e.g.,
handle); iii) Pouring – picking up a bottle, pouring its contents into another container, and placing it back
on the table; iv) Sweeping – picking up a broom from a basket, sweeping trash into a dustpan, and returning
the broom. Examples of the four tasks are illustrated in Fig. 1. For evaluation, we perform the above tasks
in both seen and unseen settings (see Fig. 9 for seen and unseen objects and backgrounds):

Seen Objects and backgrounds were observed during fine-tuning; randomized positions and distractors are
added during evaluation.

Unseen Novel objects and backgrounds for evaluation, with two additional settings: Unseen Objects, where
the objects are new but other objects of the same categories were seen in fine-tuning; and Unseen Categories,
where the objects belong to categories not encountered before.

5https://docs.manus-meta.com/latest/Products/
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Table 3: Success rates on seen real-world robot dexterous manipulation tasks (in %) .

Method
Seen Object

AveragePick & place Functional grasp Pour Sweep
(40 trials) (24 trials) (8 trials) (8 trials)

VPP 57.5 29.2 12.5 0.0 24.8
π0 37.5 25.0 75.0 50.0 46.9
No VLA pretrain 32.5 33.3 12.5 50.0 32.1
Latent action pretrain 42.5 41.7 37.5 62.5 46.0
OXE pretrain 40.0 37.5 62.5 25.0 41.3
Ours 80.0 66.7 75.0 62.5 71.0

Table 4: Success rates on unseen real-world robot dexterous manipulation tasks (in %) .

Method
Unseen Object & Background Unseen Category & Background

AveragePick & place Functional grasp Pour Pick & place
(16 trials) (16 trials) (8 trials) (24 trials)

VPP 12.5 0.0 0.0 8.3 5.2
π0 0.0 6.2 25.0 33.3 16.1
No VLA pretrain 31.2 0.0 0.0 12.5 10.9
Latent action pretrain 0.0 0.0 0.0 0.0 0.0
OXE pretrain 12.5 6.3 0.0 12.5 7.8
Ours 68.8 68.8 50.0 70.8 64.6

5.3.3 Results and Comparisons

Some representative execution results of our method are presented in Fig. 1, more are presented in Ap-
pendix C.3. For quantitative evaluation, we examine the model’s performance in terms of task success rate
and compare with prior methods. We also analyze the effect of different pretraining data and action repre-
sentations, the data scaling behavior, and the relationship between robot performance and the performance
of pretraining human-hand action prediction. All baseline methods are fine-tuned using the same robot data
collected in our study for a fair comparison.

Comparison with Prior Art We compare our method with two representative works: a) VPP [38], a
recent dexterous hand manipulation model leveraging diffusion-based video generation pretraining [10]; and
b) π0 [9], a VLA model pretrained on extensive robot data covering a wide range of embodiments.

Table 3 and 4 compare the performance of different methods, where our approach achieves significantly higher
success rates than VPP and π0, especially on unseen tasks. In our tests, the VPP model lags behind LLM-
based VLA models in instruction following and unseen object recognition; its implicit supervision through
video generation pretraining seems to transfer poorly to real manipulation tasks. While π0 is pretrained on
large-scale robot data, its knowledge primarily targets gripper-based robots and does not transfer effectively
to dexterous hands. Our model demonstrates robust generalization to unseen objects and environmental
changes and even for objects from unseen categories, highlighting the effectiveness of leveraging human
activity data for generalizable VLA learning.

Comparison of Pretraining Data To investigate the impact of different pretraining data on robot
performance, we compare our method with several baselines: a) No VLA pretrain, which is directly fine-
tuned from the base VLM model (initialized with PaliGemma-2 VLM) and a randomly-initialized action
expert without human data pretraining; b) OXE pretrain, which uses Open X-Embodiment data instead of
our human VLA data for pretraining; and c) EgoDex pretrain, which uses EgoDex data under lab environment
for pretraining.

Results of different methods are presented in Tab. 3, 4, and Fig. 10. Compared to the model without
human VLA data pretraining, our approach achieves superior execution success and stronger generalization
on unseen tasks. Compared to OXE pretraining, our method achieves substantially stronger few-shot and
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(a) (b) (c)

Figure 10: Data scaling behavior on real-robot pick-and-place tasks. The circle size indicates the visual
diversity of the pretraining data. (a) Task success rate on seen objects and backgrounds. (b) Task success
rate on unseen objects and backgrounds. (c) Correlation between robot task performance and pretraining
hand action prediction accuracy.

unseen task performance. The OXE dataset contains data from gripper-based robots and offers far less
diversity in objects, tasks, and environments compared to our human hand VLA dataset, as discussed
in Sec. 5.1. Moreover, the significant differences among its various sub-datasets also reduce the model’s
generalization ability due to shortcut learning [94]. EgoDex pretraining leverages carefully collected large-
scale human-hand data, yet its limited environmental diversity leads to lower success rates and reduced
generalization performance. As shown in Fig. 10, EgoDex performs worse than our model pretrained on
only 10% of the data, even though it contains more episodes and a significantly larger number of frames
(i.e., 130M v.s. 2.6M). Moreover, it completely fails on unseen scenes, highlighting the importance of data
diversity for generalization.

Influence of Action Representation We further compare with a baseline method, Latent action pre-
train, to validate the effectiveness of pretraining with explicit 3D action predictions. For this baseline, we
use the same episode splits and language instructions, but replace the original 3D actions to be predicted
with latent actions from LAPA [101] trained on our data.

The comparison results are also presented in Tab. 3 and 4. As shown, while latent action pretraining performs
moderately on seen tasks, it fails completely in unseen environments. This is likely due to latent actions
struggling to disentangle task-relevant motions from task-irrelevant background, causing them to fail in novel
settings6. By contrast, our approach achieves significantly better performance, benefiting from more explicit
action supervision, which leads to a smaller pretraining–finetuning gap. This demonstrates the advantage of
closely aligning human video data with robotic VLA data during pretraining.

Data Scaling Behavior Following the human-hand prediction experiments, we examine how the scale of
pretraining data affects robotic task performance. For this experiment, we compare with models pretrained
on human-hand data using 50%, 20%, and 10% of the dataset (we do not include the 1% case, as we consider
this amount too small for effective pretraining before fine-tuning). We focus on general pick-and-place tasks
involving both seen and unseen objects (categories) and backgrounds. Figure 10 illustrates the relationship
between the scale of pretraining data and robotic task success rates, showing consistent improvements on
both seen and unseen tasks as the data scale increases.

Robot Performance v.s. Pretraining Hand-Prediction Accuracy Finally, we investigate the re-
lationship between the fine-tuned robotic task success rates and the pretraining accuracy on human-hand
prediction. The former is evaluated by the average success rate across seen and unseen pick-and-place tasks,

6Some recent approaches [16] focus on better disentangling task-irrelevant information in latent actions. We leave a com-
parison with these methods for future work.
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while the latter is measured by the hand–object distance reported in Tab. 1. As shown in Fig. 10c, the two
exhibit a clear positive correlation: models that achieve higher performance on the human-hand prediction
benchmark also yield higher task success rates after fine-tuning on robot data. This suggests that our hand
action prediction benchmark can serve as an effective proxy for downstream robotic performance, enabling
rapid prototyping of pretrained VLA models.

6 Discussion and Future Work

Our method serves as an initial exploration toward constructing large-scale VLA pretraining data from
real-life human activity videos. While our current data are mainly sourced from existing egocentric human
video datasets, the automatic data pipeline is readily extensible. In future work, we plan to incorporate more
diverse video sources (e.g., Howto100M [60]) to enable larger-scale and more comprehensive VLA pretraining.
Due to the limitations of current 3D reconstruction algorithms and the inherent capabilities of the VLM, our
constructed pretraining data still exhibits some inaccuracies. We aim to further improve its quality using
more advanced reconstruction techniques, and introduces additional filtering mechanisms to remove noisy
samples. In addition, our present data construction and model training mainly target short-horizon, atomic
manipulation skills. Extending this framework to organize data into higher-level task structures for learning
long-horizon planning and reasoning abilities represents an important future direction.

Our current robotic experiments primarily focus on single-handed manipulation tasks. Nevertheless, our
framework naturally supports bimanual operations. We conduct a simple “hand-over” experiment to demon-
strate its feasibility on two-handed tasks, as shown in the bottom row of Fig. IX. We plan to investigate more
bimanual scenarios in future work. Furthermore, integrating our pretraining framework with multi-view vi-
sual inputs and tactile feedback to handle more complex manipulation tasks is another promising direction
for exploration.

7 Conclusion

This paper introduces a novel approach for pretraining robotic manipulation VLA models using unstruc-
tured real-life human activity videos. We develop a fully-automatic pipeline to convert in-the-wild egocentric
human videos into atomic-level VLA data aligned with existing robotic demonstrations. We also design a
dexterous hand VLA model with tailored training strategies to effectively leverage human data for pre-
training. Experiments show that our pretrained model exhibits strong zero-shot performance in unseen
real-world environments, high task success after being finetuned on limited robot data, and favorable data
scaling behavior, demonstrating a highly promising and scalable approach toward learning truly generalizable
embodied robots.
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A More Implementation Details

A.1 Hand V-L-A Data Construction

A.1.1 3D Motion Labeling

Camera Intrinsics Estimation For videos captured with moving cameras, we apply DroidCalib to es-
timate the camera intrinsics under the unified camera model [58], which extends the conventional pinhole
model by introducing an additional distortion parameter to better handle ultra-wide-angle and fisheye cam-
eras. During estimation, we assume the principal point lies at the image center and the focal lengths are
identical in both image axes. For static cameras, we first employ DeepCalib to estimate intrinsics under
the same unified camera model assumption. If the distortion coefficients are small, we apply MoGe-2 to
estimate the final focal length under the pinhole camera model assumption. For videos with non-negligible
distortion, an additional undistortion step is applied to make the images conform to the pinhole model before
subsequent processing.

Video Hand Reconstruction We employ HaWoR for camera-space 3D hand reconstruction which is
capable of jointly reconstructing hands within each video chunk. The camera focal information estimated in
the previous stage is provided as input to HaWoR to facilitate accurate hand reconstruction. The original
HaWoR includes a hand motion infiller module that interpolates missing frames in the 3D reconstruction.
We discard this module in our pipeline, as its interpolation results are less reliable on in-the-wild videos.

Camera Pose Estimation We use MegaSAM for metric-scale camera pose estimation. The original
MegaSAM incorporates depth priors predicted by DepthAnything [99] and UniDepth [68] to address chal-
lenges in videos with limited camera baselines and complex scene dynamics. In our initial exploration, we
found that replacing these depth modules with direct outputs from MoGe-2 yields more accurate and sta-
ble results, while significantly improving inference efficiency. Therefore, we adopt this modified version of
MegaSAM in our framework. Additionally, when estimating the camera, we initialize MegaSAM’s camera
intrinsics using the focal length information obtained from the previous stage.

A.1.2 Atomic Action Segmentation

We segment long videos into atomic-level video clips using speed minima of the 3D hand wrists in the world
space. Before computing the minima, the 3D wrist trajectories are smoothed with a Gaussian filter in world
space to mitigate spurious extrema caused by reconstruction noise. Additionally, a detected minimum is
required to be the smallest value within a 0.5-seconds window centered on it to further mitigate noise effects.

A.1.3 Instruction Labeling

We prompt GPT-4.1 to generate action captions based on sampled frames from atomic-level video clips. A
detailed example is illustrated in Fig. I. After obtaining a caption for a video clip, we further ask GPT-4.1 to
rephrase it into five diverse versions while preserving the original meaning, in order to increase the diversity
of language descriptions.

A.2 Model Architecture

A.2.1 VLM Backbone

Our VLM is based on the 3B version of PaliGemma-2 with “mix checkpoint” that has been further fine-tuned
on multiple downstream tasks. The input image resolution is 2242, and all images of varying sizes are directly
resized to this resolution without any additional center cropping. To improve the model’s understanding
of the original images’ aspect ratio and camera intrinsics, we incorporate the camera FoV as an additional
token. The FoV token is projected via an MLP to align with the embedding space of the LLM input
tokens, allowing the model to interpret the geometric characteristics of visual inputs more effectively. This
is important because the SigLIP encoder processes images with a fixed 1:1 aspect ratio, which may lead to
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ambiguity if FoV cues are absent. Moreover, our trajectory-aware augmentation (see Sec. 4.2) modifies the
FoV, necessitating the model to consider these variations for correct interpretation of the augmented images.

A.2.2 Diffusion Action Expert

The action expert is implemented as a Diffusion Transformer with approximately 136M parameters. Within
each transformer block, we replace bidirectional self-attention with causal self-attention for action tokens
(see Sec. 4.1.4 for further discussion), and QKNorm [35] is applied in the attention layers while LayerNorm
is replaced with RMSNorm [103] to improve training stability. The cognition feature f c, the hand state
st, and the noisy action chunk are first projected via an MLP and subsequently processed through a causal
self-attention layer. Additionally, f c is injected via AdaLN to further enhance vision–language conditioning.

A.2.3 State and Action Normalization

For both state and action inputs to the action expert, we apply mean–variance normalization to each di-
mension, standardizing them to zero mean and unit variance. During pretraining, dataset-specific statistics
are first computed, after which unified normalization parameters are derived by weighting each dataset ac-
cording to its frame sampling probability. These parameters are then kept fixed throughout pretraining and
zero-shot hand action prediction evaluation. During fine-tuning, we recompute the mean and variance from
the robot data and apply normalization accordingly.

A.3 Training Details

During training, we employ PyTorch’s Fully Sharded Data Parallel (FSDP) framework. The length of the
action chunk is set to 16, and the diffusion process uses 100 noise steps. For each VLM forward pass, eight
noisy samples are randomly drawn to train the action expert efficiently, following [48]. AdamW [54] is used
as the optimizer with a weight decay of 1e-1 and a gradient clipping value of 1.0, applied consistently in
both pretraining and fine-tuning stages. The β parameters of AdamW are set to (β1, β2) = (0.9, 0.99) during
pretraining and (β1, β2) = (0.9, 0.95) during fine-tuning to enhance training stability.

At the pretraining stage, we employ trajectory-aware augmentation as discussed in Sec. 4.2. For episodes
annotated with multiple language instructions by GPT (see Appendix A.1.3), a single instruction is ran-
domly selected per trajectory. The state input st to the action expert is dropped with a probability of 0.1,
encouraging the model to rely solely on vision–language input and preventing overfitting to the state. Simi-
larly, the cognition token is dropped with a probability of 0.1 in the action expert to leverage classifier-free
guidance (CFG) [36].

During finetuning, we align the coordinate systems of the real-robot and pretrained human data, and map
the robot hand’s action dimensions to match those of the human hand, following the discussion in Sec 4.3. By
default, the pretrained model is finetuned for 20K steps. The model without VLA pretraining are finetuned
for 60K steps, as they do not converge within 20K steps and produce highly jittery actions. For other
configurations, including ablations and prior methods, we select the best-performing checkpoint every 10K
steps. All prior methods used for comparison are implemented using their official repositories.

A.4 Inference Details

During inference, we use DDIM [79] with 10 sampling steps and a CFG scale of 5.0. For real-robot execution,
we adopt the action chunking strategy [48, 106], executing 6 out of 16 actions at a time. Predicted end-effector
actions in the camera coordinate frame are first converted to absolute 6D poses in the robot coordinate frame,
then transformed into joint angles using an inverse kinematics (IK) solver. The resulting hand joint angles
are directly mapped to the corresponding robot dexterous hand joints for execution. Experiments for Human
Hand Action Prediction (Sec. 5.2) are conducted on a single NVIDIA A6000 GPU, while Real-World Robot
Dexterous Manipulation experiments (Sec. 5.3) use a single NVIDIA 4090 GPU.
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A.5 Robot Teleoperation System

A.5.1 Leader–Follower Teleoperation Arm

We use a leader–follower arm system for teleoperation data collection. The leader arms share the same joint
topology as the Realman robot arms. Operators manipulate the leader arms to perform desired motions,
and the joint angles measured from the leader arms are directly sent to the follower arms (i.e., robot arms)
to replicate these motions, enabling precise control of the end-effector 6D pose.

A.5.2 Hand Pose Retargeting

We use MANUS gloves to directly control the dexterous robot hand and employ a hand pose retargeting
method to map the glove measurements to the joint angles of the robot hand for precise motion control. At
each timestep, the retargeting algorithm optimizes the mapping to transform human hand motions into the
corresponding robot hand movements. We implement two optimizers in our pipeline, as described below:

DexPilot Optimizer The first follows the approach of DexPilot [34] and the implementation of
AnyTeleop [70]. We define a set of vectors V consisting of the five wrist-to-fingertip vectors and ten inter-
finger vectors. The objective is to minimize the squared difference between the glove keypoint vectors vh

i

and the corresponding robot vectors vr
i (qt) obtained through forward kinematics:

Lvec(qt) =
N∑

i=0
s(di)

∥∥αvh
i − vr

i (qt)
∥∥2 + β ∥qt − qt−1∥2

, (I)

subject to ql ≤ qt ≤ qu, where ql and qu denote the joint limits of the robot hand, α is a scaling factor to
account for different hand sizes, and β is a weight for temporal smoothness. The switching weight function
s(di) increases as the distance di between the fingertip and wrist decreases, encouraging fingertip contact.

Angle Matching The second optimizer focuses on two key vectors: the thumb–wrist vector and the
vector connecting the index fingertip to its root. Their optimization follows the same formulation as Eq. (I).
Notably, only the lateral-swing degrees of freedom (i.e., abduction and adduction) of the thumb and index
finger are updated based on this optimization, while their flexion degrees of freedom are excluded. All
remaining joints are directly controlled using angles derived from the glove keypoints.

Given glove keypoints ki ∈ R3, joint angles are computed from triplets (Aj , Bj , Cj) as

θh
j = arccos

(
(kAj − kBj )⊤(kCj − kBj )
∥kAj

− kBj
∥ ∥kCj

− kBj
∥

)
,

with the sign determined by the cross product relative to a reference axis, where (Aj , Bj , Cj) denote the
indices of three glove keypoints forming two connected bone segments. Each glove angle θh

j is then linearly
mapped from its empirical range [θh,min

j , θh,max
j ] to the corresponding robot joint limits [θr,min

j , θr,max
j ]:

θr
j =

θh
j − θh,min

j

θh,max
j − θh,min

j

(
θr,max

j − θr,min
j

)
+ θr,min

j ,

and clipped to the valid range [θr,min
j , θr,max

j ]. The resulting θr values are applied directly as angle commands
to the robot hand.

B More Evaluation Details

B.1 Hand Action Prediction Benchmark

We use the benchmark described in Sec. 5.2.1 to quantitatively evaluate the performance of the pretrained
VLA models on the grasping task. The RGB-D images captured with the Azure Kinect are first undistorted
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to remove camera distortion. Then, for each image, we manually annotate the object positions and their
corresponding captions. The annotated object positions are subsequently used as prompts for SAM-2 [74]
to obtain the corresponding object masks. These masks, together with the depth images and the camera
intrinsics, are used to reconstruct the 3D point cloud of each object in the camera coordinate frame.

For each image-caption pair corresponding to a target object in the scene, we render a synthetic hand with
an attached arm using SMPL-X [66], a parametric full-body model that incorporates the MANO hand. We
assign the hand a natural resting pose and place it approximately 20 cm away from the target object. We
ensure that the synthetic hand is always positioned closer to the camera than the target object, preventing
incorrect occlusion relationships in the rendered images. The images with the rendered hand, along with the
corresponding language instructions, are then used to evaluate VLA hand action prediction. We prompt the
model to generate a single action chunk, which corresponds to approximately 0.5 s of motion for our model
and 1 s for Being-H0, and compute the minimal distance between the fingertip positions and the object’s
point cloud. For each instruction, we independently generate four trajectories and report the mean of their
minimal hand–object distances. The final score is obtained by averaging (or taking the median of) these
distances across all image–instruction pairs.

B.2 User Study

For more general hand actions, we assess the plausibility of the action predictions through a user study. We
developed a website to allow participants to evaluate the quality of actions generated by different methods.
The user interface is shown in Fig. II. Each participant was assigned 30 trials, randomly selected from a
total of 117 scenes. For each case, the results from different methods were anonymized and presented in a
randomized order to avoid any bias. The hand motions generated by each method were rendered as videos,
and participants were asked to judge whether the generated video matched the given language instruction
and to rank the different methods accordingly.

C More Results

C.1 Human Hand V-L-A Data

We showcase additional hand VLA data constructed using our method in Figs. III and IV. Our dataset
covers a wide range of environments and hand actions. Moreover, due to the presence of moving cameras in
our scenes, the observations across different frames show noticeable variation, further increasing the diversity
of the data.

C.2 Hand Action Prediction Results

We provide more hand action prediction results on unseen real-life environments in Fig. V and VI. Our
pretrained VLA model demonstrates strong generalization across these scenes and is capable of predicting
diverse human hand motions.

C.3 Real-Robot Execution Results

Figures VII, VIII, and IX present additional visual results of real robot task executions in our experiments. In
the last row of Fig. IX, we additionally showcase a bimanual “hand over” task, demonstrating the framework’s
ability to transfer naturally to bimanual tasks.
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system_prompt = """
You are a multimodal expert specializing in video captioning for egocentric human-object interaction (HOI) clips.  
"""

user_prompt = """
 I will send you a set of video frames. Your goal is to describe the **specific {hand_type}-hand action** shown in 
the provided video frames below. These frames are sampled from an egocentric video and contain a single atomic hand-
object interaction. A projected 2D hand trajectory is overlaid — this path represents the 3D palm center over time, with 
color gradually transitioning from blue to green to red to indicate temporal progression. The {hand_type}-hand palm 
position is marked with a blue dot. **Do not confuse it with the {opposite_hand_type} hand.** Respect the temporal order 
of frames. Each one is labeled by number (e.g., “Frame 1”, “Frame 2”, etc.), indicating its place in the time sequence. 
Please analyze the action step by step. Consider the hand status in each frame, whether there is an interacted object in 
each frame, and the temporal order of the frames.

    Generate a one-sentence description of the {hand_type}-hand action shown in the entire sequence. When describing the 
{hand_type}-hand action, please follow these rules:
    - **Only describe {hand_type}-hand actions**. Ignore the {opposite_hand_type} hand completely.  
    - **Write in imperative form** (e.g., “Insert the key,” not “The hand is inserting…”). Do not use personal pronouns.  
    - Use **specific, descriptive verbs**. If the action clearly involves picking up or placing an object, prefer verbs 
like “pick” and “place” to highlight the action intent. Avoid vague or generic terms like “clean”, “spray”, or "fix". 
    - Describe the interacted object only if:
        (1) the {hand_type} hand clearly interacts with it,
        (2) or, if not, the hand is purposefully moving toward it with clear intent.
        (3) If neither applies, return "N/A".
    - Be careful not to misidentify objects or their colors due to the trajectory overlay.  
    - **Do not hallucinate**: if no clear or meaningful hand action, or object is present, return: "N/A". 
    - Do not guess the action based on context. For example, do not assume someone is brushing something just because 
there's a sink.
    - Return your answer in **JSON format** with two fields:
        (1) "think": a brief, step-by-step reasoning process (no longer than 3-4 sentences) explaining how the 
{hand_type}-hand action was determined from the hand motion trajectory and visual content.
        (2) "action": the final one-sentence description of the {hand_type}-hand action, following all the rules above.

    Please prepare to receive the frames.

    Frame 1:                     Frame 2:                     Frame 3:                     Frame 4:

    Frame 5:                     Frame 6:                     Frame 7:                     Frame 8:           

    Please now analyze and generate the results.
"""

response = """
{
  "think": "In Frame 1, the right hand is holding a spoon and moving toward a container of utensils. In Frames 2-4, the 
hand approaches the container, and by Frames 5-8, the hand is clearly placing the spoon into the container. The hand 
trajectory shows a continuous movement from the sink area to the utensil container, with the spoon always in the right 
hand and being deposited among other utensils. The action is specific and involves placing the spoon into the 
container.", 
 "action": "Place the spoon into the utensil container." 
}
"""

Figure I: An example of our instruction labeling process.
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Figure II: User study interface for hand action prediction.
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Right hand: Pick up the pot lid by its handle.

Left hand: Push the mop forward across the floor.

Right hand: Wipe the stove surface with a blue cloth.

Left hand: Slide the wooden stick across the table. 

Left hand: Place the plate with food into the microwave. Right hand: Remove the pink plate from the microwave. 

Figure III: Examples of our hand V-L-A data used for pretraining. The first row in each case visualizes the
reconstructed 3D hands for individual frames, while the second row shows the hand action trajectory from
the current frame to the end of the episode. The color gradient from purple to yellow indicates the temporal
progression from the beginning to the end of the episode.
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Left hand: Turn a page of the book with the left hand.

Left hand: Push the cabinet door open.

Left hand: Press the left hand against the top edge of the pink foam board. Right hand: Grasp the top edge of the pink foam board. 

Right hand: Pick up the spray bottle. 

Left hand: Pull and extend the tape measure along the edge of the wooden plank. Right hand: Place the tape measure onto the wooden plank.

Figure IV: Examples of our hand V-L-A data used for pretraining. The first row in each case visualizes the
reconstructed 3D hands for individual frames, while the second row shows the hand action trajectory from
the current frame to the end of the episode. The color gradient from purple to yellow indicates the temporal
progression from the beginning to the end of the episode.
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Right hand: Pick up the water filter.

Right hand: Pick up the green sauce bottle.

Right hand: Pick up the plate in the microwave oven.

Right hand: Pick up the silver cup.

Right hand: Grasp the cardboard box.

Right hand: Grasp the headphones.

Left hand: Pick up the yellow scissors.

Left hand: Pick up the metal basin.

Figure V: Hand action prediction (grapsing) in unseen real-world environments by our method, with time
increasing from left to right.
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Right hand: Take the milk bottle out of the fridge.

Right hand: Clamp the locking pliers.

Right hand: Open the cabinet door.

Right hand: Slide open the door.

Left hand: Push the chair toward the table.

Left hand: Pour water into the pink cup.

Left hand: Unplug the plug on the wall.

Left hand: Hold the meat. Right hand: Cut the meat with the knife. 

Figure VI: Hand action prediction (general action) in unseen real-world environments by our method, with
time increasing from left to right.
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Right hand: Pick up the pink gum jar. Right hand: Place the pink gum jar into the brown basket. 

Right hand: Pick up the popcorn box. Right hand: Place the popcorn box into the brown basket. 

Right hand: Pick up the blue wooden cube. Right hand: Place the blue wooden cube into the brown basket. 

Right hand: Pick up the blackboard eraser. Right hand: Place the blackboard eraser into the brown basket. 

Right hand: Pick up the tomato. Right hand: Place the tomato into the brown basket. 

Right hand: Pick up the power screwdriver. 

Right hand: Pick up the whisk. 

Right hand: Pick up the pink sponge bottle brush. 

Figure VII: In-domain execution trajectories of the general pick-and-place task and the functional grasping
task. Rows 1–5 show examples of execution trajectories for the general pick-and-place task, while rows 6–8
present examples for the functional grasping task. Images are captured with the robot head camera, with
time increasing from left to right.
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(Unseen category) Right hand: Pick up the spatula. 

(Unseen object) Right hand: Pick up the ceramic cup. Right hand: Place the ceramic cup into the brown basket. 

(Unseen object) Right hand: Pick up the bottle with oolong tea. Right hand: Place the bottle with oolong tea into the brown basket. 

(Unseen category) Right hand: Pick up the spray can. Right hand: Place the spray can into the brown basket. 

(Unseen category) Right hand: Pick up the charger. Right hand: Place the charger into the brown basket. 

(Unseen category) Right hand: Pick up the towel. Right hand: Place the towel into the brown basket. 

(Unseen object) Right hand: Pick up the pot. 

Figure VIII: Execution trajectories of the general pick-and-place task and the functional grasping task with
unseen background and objects. Rows 1–5 show examples of execution trajectories for the general pick-and-
place task, while rows 6–7 present examples for the functional grasping task. Unseen object means the objects
are new but other objects of the same categories were seen in fine-tuning; and unseen categories means the
objects belong to categories not encountered before. Images are captured with the robot head camera, with
time increasing from left to right.
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1. Right hand: Pick up the bottle. 2. Right hand: Pour the contents of the bottle into the pot. 3. Right hand: Place the bottle onto the table.

(Unseen object) 1. Right hand: Pick up the bottle. 2. Right hand: Pour the contents of the bottle into the pot. 3. Right hand: Place the bottle onto the table.

1. Right hand: Pick up the broom by its handle. 2. Right hand: Sweep the paper ball into the dustpan. 3. Right hand: Place the broom in the basket.

1. Right hand: Pick up the cup brush by the sponge. 2. Left hand: Receive the cup brush by the handle;
Right hand: Hand over the cup brush from the right hand to the left hand. 3. Left hand: Place the cup brush into the mixing bowl.

Figure IX: Execution trajectories of the sequential tasks. Rows 1–3 correspond to the sweeping task, rows
4–5 correspond to the seen pouring task, rows 6–7 correspond to the pouring task with unseen backgrounds
and objects, and rows 8–9 correspond to the bimanual dexterous handover task. The numbers indicate the
execution order of these tasks. Images are captured with the robot head camera, with time increasing from
left to right and from top to bottom.
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