Reinforcement Learning API¶
agentlightning.verl
¶
NamedResources = Dict[str, ResourceUnion]
module-attribute
¶
A dictionary-like class to hold named resources.
Example
resources: NamedResources = { 'main_llm': LLM( endpoint="http://localhost:8080", model="llama3", sampling_parameters={'temperature': 0.7, 'max_tokens': 100} ), 'system_prompt': PromptTemplate( template="You are a helpful assistant.", engine='f-string' ) }
AgentLightningServer
¶
The main SDK class for developers to control the Agent Lightning Server.
This class manages the server lifecycle, task queueing, resources updates, and retrieval of results, providing a simple interface for the optimization logic.
Source code in agentlightning/server.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
__init__(host='127.0.0.1', port=8000, task_timeout_seconds=300.0)
¶
Initializes the server controller.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
host
|
str
|
The host to bind the server to. |
'127.0.0.1'
|
port
|
int
|
The port to bind the server to. |
8000
|
task_timeout_seconds
|
float
|
Time in seconds after which a claimed task is considered stale and requeued. |
300.0
|
Source code in agentlightning/server.py
get_completed_rollout(rollout_id)
async
¶
Retrieves a specific completed rollout by its ID.
Source code in agentlightning/server.py
poll_completed_rollout(rollout_id, timeout=None)
async
¶
Polls for a completed rollout by its ID, waiting up to timeout
seconds.
Source code in agentlightning/server.py
queue_task(sample, mode=None, resources_id=None, metadata=None)
async
¶
Adds a task to the queue for a client to process.
Source code in agentlightning/server.py
retrieve_completed_rollouts()
async
¶
Retrieves all available completed trajectories and clears the internal store.
Source code in agentlightning/server.py
run_forever()
async
¶
Runs the server indefinitely until stopped. This is useful when async start and stop methods do not work.
start()
async
¶
Starts the FastAPI server in the background.
stop()
async
¶
Gracefully stops the running FastAPI server.
Source code in agentlightning/server.py
update_resources(resources)
async
¶
Updates the resources, creating a new version and setting it as the latest.
Source code in agentlightning/server.py
AgentLightningTrainer
¶
Bases: RayPPOTrainer
Specialized PPO trainer for agent-based reinforcement learning.
This trainer is designed specifically for scenarios where the model interacts with external environments, tools, or APIs through an AgentLightningServer. It simplifies the training loop by removing the complex conditional logic present in the original RayPPOTrainer and focusing on the agent mode workflow.
Key differences from RayPPOTrainer: 1. Uses AgentModeDaemon for server communication 2. Simplified data flow without pop/union operations 3. Direct batch processing through agent daemon 4. Streamlined validation using agent_mode validation
Source code in agentlightning/verl/trainer.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
|
AgentModeDaemon
¶
AgentModeDaemon using the AgentLightningServer SDK.
This class manages the server lifecycle, task queueing, and results retrieval, while also running a proxy server for LLM requests. It maintains the original interface for compatibility with the RayPPOTrainer.
Source code in agentlightning/verl/daemon.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
|
clear_data_and_server()
¶
Resets the internal state of the daemon for the next run.
Source code in agentlightning/verl/daemon.py
get_test_metrics()
¶
Calculates and returns metrics for a validation run.
Source code in agentlightning/verl/daemon.py
get_train_data_batch(max_prompt_length, max_response_length, device)
¶
Processes completed rollouts to generate a training data batch.
This function reconstructs the logic from the original AgentModeDaemon, using data retrieved from the new server architecture. It handles padding, truncation, and tensor creation for the PPO training loop.
Source code in agentlightning/verl/daemon.py
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
|
run_until_all_finished(verbose=True)
¶
Synchronously waits for all queued tasks to be completed and reported.
Source code in agentlightning/verl/daemon.py
set_up_data_and_server(data, server_addresses, is_train=True)
¶
Synchronous wrapper for setting up data and server resources.
Source code in agentlightning/verl/daemon.py
start()
¶
Starts the main AgentLightningServer and the proxy server.
Source code in agentlightning/verl/daemon.py
LLM
¶
Bases: Resource
Provide an LLM endpoint and model name as a resource.
Attributes:
Name | Type | Description |
---|---|---|
endpoint |
str
|
The URL of the LLM API endpoint. |
model |
str
|
The identifier for the model to be used (e.g., 'gpt-4o'). |
sampling_parameters |
SamplingParameters
|
A dictionary of hyperparameters for model inference, such as temperature, top_p, etc. |
Source code in agentlightning/types.py
Rollout
¶
Bases: BaseModel
The standard reporting object from client to server.
Source code in agentlightning/types.py
get_left_padded_ids_and_attention_mask(ids, max_length, pad_token_id)
¶
Left-pad (or truncate) a sequence of token IDs to a fixed length, and build the corresponding attention mask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
List[int]
|
the original list of token IDs. |
required |
max_length
|
int
|
desired total length after padding/truncation. |
required |
pad_token_id
|
int
|
ID to use for padding. |
required |
Returns:
Name | Type | Description |
---|---|---|
padded_ids |
any
|
list of length == max_length. |
attention_mask |
any
|
list of same length: 1 for non-pad tokens, 0 for pads. |
Source code in agentlightning/verl/daemon.py
get_right_padded_ids_and_attention_mask(ids, max_length, pad_token_id)
¶
Right-pad (or truncate) a sequence of token IDs to a fixed length, and build the corresponding attention mask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
List[int]
|
the original list of token IDs. |
required |
max_length
|
int
|
desired total length after padding/truncation. |
required |
pad_token_id
|
int
|
ID to use for padding. |
required |
Returns:
Name | Type | Description |
---|---|---|
padded_ids |
any
|
list of length == max_length. |
attention_mask |
any
|
list of same length: 1 for non-pad tokens, 0 for pads. |