Reinforcement Learning API¶
agentlightning.verl
¶
NamedResources = Dict[str, ResourceUnion]
module-attribute
¶
A dictionary-like class to hold named resources.
Example
resources: NamedResources = { 'main_llm': LLM( endpoint="http://localhost:8080", model="llama3", sampling_parameters={'temperature': 0.7, 'max_tokens': 100} ), 'system_prompt': PromptTemplate( template="You are a helpful assistant.", engine='f-string' ) }
AgentLightningServer
¶
The main SDK class for developers to control the Agent Lightning Server.
This class manages the server lifecycle, task queueing, resources updates, and retrieval of results, providing a simple interface for the optimization logic.
Source code in agentlightning/server.py
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
|
__init__(host='127.0.0.1', port=8000, task_timeout_seconds=300.0)
¶
Initializes the server controller.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
host
|
str
|
The host to bind the server to. |
'127.0.0.1'
|
port
|
int
|
The port to bind the server to. |
8000
|
task_timeout_seconds
|
float
|
Time in seconds after which a claimed task is considered stale and requeued. |
300.0
|
Source code in agentlightning/server.py
get_completed_rollout(rollout_id)
async
¶
Retrieves a specific completed rollout by its ID.
Source code in agentlightning/server.py
poll_completed_rollout(rollout_id, timeout=None)
async
¶
Polls for a completed rollout by its ID, waiting up to timeout
seconds.
Source code in agentlightning/server.py
queue_task(sample, mode=None, resources_id=None, metadata=None)
async
¶
Adds a task to the queue for a client to process.
Source code in agentlightning/server.py
retrieve_completed_rollouts()
async
¶
Retrieves all available completed trajectories and clears the internal store.
Source code in agentlightning/server.py
run_forever()
async
¶
Runs the server indefinitely until stopped. This is useful when async start and stop methods do not work.
start()
async
¶
Starts the FastAPI server in the background.
stop()
async
¶
Gracefully stops the running FastAPI server.
Source code in agentlightning/server.py
update_resources(resources)
async
¶
Updates the resources, creating a new version and setting it as the latest.
Source code in agentlightning/server.py
AgentLightningTrainer
¶
Bases: RayPPOTrainer
Specialized PPO trainer for agent-based reinforcement learning.
This trainer is designed specifically for scenarios where the model interacts with external environments, tools, or APIs through an AgentLightningServer. It simplifies the training loop by removing the complex conditional logic present in the original RayPPOTrainer and focusing on the agent mode workflow.
Key differences from RayPPOTrainer: 1. Uses AgentModeDaemon for server communication 2. Simplified data flow without pop/union operations 3. Direct batch processing through agent daemon 4. Streamlined validation using agent_mode validation
Source code in agentlightning/verl/trainer.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
|
AgentModeDaemon
¶
AgentModeDaemon using the AgentLightningServer SDK.
This class manages the server lifecycle, task queueing, and results retrieval, while also running a proxy server for LLM requests. It maintains the original interface for compatibility with the RayPPOTrainer.
Source code in agentlightning/verl/daemon.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
|
clear_data_and_server()
¶
Resets the internal state of the daemon for the next run.
Source code in agentlightning/verl/daemon.py
get_test_metrics()
¶
Calculates and returns metrics for a validation run.
Source code in agentlightning/verl/daemon.py
get_train_data_batch(max_prompt_length, max_response_length, device)
¶
Processes completed rollouts to generate a training data batch.
This function reconstructs the logic from the original AgentModeDaemon, using data retrieved from the new server architecture. It handles padding, truncation, and tensor creation for the PPO training loop.
Source code in agentlightning/verl/daemon.py
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
|
run_until_all_finished(verbose=True)
¶
Synchronously waits for all queued tasks to be completed and reported.
Source code in agentlightning/verl/daemon.py
set_up_data_and_server(data, server_addresses, is_train=True)
¶
Synchronous wrapper for setting up data and server resources.
Source code in agentlightning/verl/daemon.py
start()
¶
Starts the main AgentLightningServer and the proxy server.
Source code in agentlightning/verl/daemon.py
BaseTraceTripletAdapter
¶
Dataset
¶
Bases: Protocol
, Generic[T_co]
The general interface for a dataset.
It's currently implemented as a protocol, having a similar interface to torch.utils.data.Dataset. You don't have to inherit from this class; you can use a simple list if you want to.
Source code in agentlightning/types/core.py
LLM
¶
Bases: Resource
Provide an LLM endpoint and model name as a resource.
Attributes:
Name | Type | Description |
---|---|---|
endpoint |
str
|
The URL of the LLM API endpoint. |
model |
str
|
The identifier for the model to be used (e.g., 'gpt-4o'). |
sampling_parameters |
SamplingParameters
|
A dictionary of hyperparameters for model inference, such as temperature, top_p, etc. |
Source code in agentlightning/types/resources.py
get_base_url(*args, **kwargs)
¶
The base_url to put into openai.OpenAI.
Users are encouraged to use base_url
to get the LLM endpoint instead of accessing endpoint
directly.
LLMProxy
¶
Host a LiteLLM OpenAI-compatible proxy bound to a LightningStore.
The proxy:
- Serves an OpenAI-compatible API via uvicorn.
- Adds rollout/attempt routing and headers via middleware.
- Registers OTEL export and token-id callbacks.
- Writes a LiteLLM worker config file with
model_list
and settings.
Lifecycle:
start()
writes config, starts uvicorn server in a thread, and waits until ready.stop()
tears down the server and removes the temp config file.restart()
convenience wrapper to stop then start.
Usage Note: As the LLM Proxy sets up an OpenTelemetry tracer, it's recommended to run it in a different process from the main runner (i.e., tracer from agents).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
port
|
int
|
TCP port to bind. |
required |
model_list
|
List[ModelConfig]
|
LiteLLM |
required |
store
|
LightningStore
|
LightningStore used for span sequence and persistence. |
required |
host
|
str | None
|
Publicly reachable host used in resource endpoints. Defaults to best-guess IPv4. |
None
|
litellm_config
|
Dict[str, Any] | None
|
Extra LiteLLM proxy config merged with |
None
|
num_retries
|
int
|
Default LiteLLM retry count injected into |
0
|
Source code in agentlightning/llm_proxy.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
|
as_resource(rollout_id=None, attempt_id=None, model=None, sampling_parameters=None)
¶
Create an LLM
resource pointing at this proxy with rollout context.
The returned endpoint is
http://{host}:{port}/rollout/{rollout_id}/attempt/{attempt_id}
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rollout_id
|
str | None
|
Rollout identifier used for span attribution. If None, will instantiate a ProxyLLM resource. |
None
|
attempt_id
|
str | None
|
Attempt identifier used for span attribution. If None, will instantiate a ProxyLLM resource. |
None
|
model
|
str | None
|
Logical model name to use. If omitted and exactly one model is configured, that model is used. |
None
|
sampling_parameters
|
Dict[str, Any] | None
|
Optional default sampling parameters. |
None
|
Returns:
Name | Type | Description |
---|---|---|
LLM |
LLM
|
Configured resource ready for OpenAI-compatible calls. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Source code in agentlightning/llm_proxy.py
is_running()
¶
Return whether the uvicorn server is active.
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if server was started and did not signal exit. |
restart(*, _port=None)
¶
Restart the proxy if running, else start it.
Convenience wrapper calling stop()
followed by start()
.
Source code in agentlightning/llm_proxy.py
set_store(store)
¶
Set the store for the proxy.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
store
|
LightningStore
|
The store to use for the proxy. |
required |
start()
¶
Start the proxy server thread and initialize global wiring.
Side effects:
- Sets the module-level global store for middleware/exporter access.
- Calls
initialize()
once to register middleware and callbacks. - Writes a temporary YAML config consumed by LiteLLM worker.
- Launches uvicorn in a daemon thread and waits for readiness.
Source code in agentlightning/llm_proxy.py
stop()
¶
Stop the proxy server and clean up temporary artifacts.
This is a best-effort graceful shutdown with a bounded join timeout.
Source code in agentlightning/llm_proxy.py
update_model_list(model_list)
¶
Replace the in-memory model list and hot-restart if running.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_list
|
List[ModelConfig]
|
New list of model entries. |
required |
Source code in agentlightning/llm_proxy.py
LightningStore
¶
A centralized, thread-safe, async, data store for the lightning's state. This holds the task queue, versioned resources, and completed rollouts.
The store has a built-in clock and it should be responsible for tracking the times. All the time-based operations like retry, timeout, etc. should be handled by the store.
Source code in agentlightning/store/base.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
|
add_otel_span(rollout_id, attempt_id, readable_span, sequence_id=None)
async
¶
Add an opentelemetry span to the store.
If sequence_id is not provided, it will be fetched from get_next_span_sequence_id
and assigned automatically.
Source code in agentlightning/store/base.py
add_resources(resources)
async
¶
Safely stores a new version of named resources and sets it as the latest. Not implemented by many stores yet.
add_span(span)
async
¶
Add a span to the store.
This method is responsible for updating the rollout/attempt status to "running" if needed.
dequeue_rollout()
async
¶
Retrieves the next task from the queue without blocking. Returns None if the queue is empty.
Will set the rollout status to preparing.
Source code in agentlightning/store/base.py
enqueue_rollout(input, mode=None, resources_id=None, metadata=None)
async
¶
Adds a new task to the queue with specific metadata and returns the rollout object with its unique ID.
Source code in agentlightning/store/base.py
get_latest_attempt(rollout_id)
async
¶
get_latest_resources()
async
¶
get_next_span_sequence_id(rollout_id, attempt_id)
async
¶
Get the next span sequence ID for a given rollout and attempt. This should be used to assign a unique sequence ID to each span within an attempt.
Recommend getting the ID before the operation even begins to avoid racing conditions.
Source code in agentlightning/store/base.py
get_resources_by_id(resources_id)
async
¶
Safely retrieves a specific version of named resources by its ID.
get_rollout_by_id(rollout_id)
async
¶
query_attempts(rollout_id)
async
¶
Query and retrieve all attempts associated with a specific rollout ID. Returns an empty list if no attempts are found.
query_rollouts(*, status=None, rollout_ids=None)
async
¶
Query and retrieve rollouts filtered by their status. If no status is provided, returns all rollouts.
Source code in agentlightning/store/base.py
query_spans(rollout_id, attempt_id=None)
async
¶
Query and retrieve all spans associated with a specific rollout ID. Returns an empty list if no spans are found.
Source code in agentlightning/store/base.py
start_attempt(rollout_id)
async
¶
Create a new attempt for a given rollout ID and return the attempt details.
start_rollout(input, mode=None, resources_id=None, metadata=None)
async
¶
Add one incomplete rollout to the store, and get an attempt created for it. This will immediately sets the rollout to a preparing state, and should be used by whoever is going to execute the rollout.
Return a special rollout with attempt object. Do not update it directly.
But if the rollout fails or timeouts, it's still possible that the watchdog sends it back to the queue for retry.
To enqueue a rollout to the task queue, use enqueue_rollout
instead.
Source code in agentlightning/store/base.py
update_attempt(rollout_id, attempt_id, status=UNSET, worker_id=UNSET, last_heartbeat_time=UNSET, metadata=UNSET)
async
¶
Update a specific or latest attempt for a given rollout.
Update the latest attempt will NOT affect the corresponding rollout status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rollout_id
|
str
|
Unique identifier for the rollout |
required |
attempt_id
|
str | Literal['latest']
|
Unique identifier for the attempt |
required |
status
|
AttemptStatus | Unset
|
Status to set for the attempt, update if provided |
UNSET
|
worker_id
|
str | Unset
|
Worker identifier, update if provided |
UNSET
|
last_heartbeat_time
|
float | Unset
|
Timestamp of the last heartbeat from the worker |
UNSET
|
metadata
|
Optional[Dict[str, Any]] | Unset
|
Dictionary of additional metadata to update, will replace the existing metadata |
UNSET
|
Source code in agentlightning/store/base.py
update_resources(resources_id, resources)
async
¶
Safely stores a new version or updates an existing version of named resources and sets it as the latest.
Source code in agentlightning/store/base.py
update_rollout(rollout_id, input=UNSET, mode=UNSET, resources_id=UNSET, status=UNSET, config=UNSET, metadata=UNSET)
async
¶
Update the rollout status and related metadata.
Not-listed fields here either cannot be updated, or should be auto-updated (e.g., end_time).
When status is updated to a finished / problematic state, other states like task queues will be updated accordingly.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rollout_id
|
str
|
Unique identifier for the rollout to update |
required |
input
|
TaskInput | Unset
|
New input data for the rollout. If set, will be updated. Can be updated to None |
UNSET
|
mode
|
Optional[Literal['train', 'val', 'test']] | Unset
|
New mode for the rollout. If set, will be updated. Can be updated to None |
UNSET
|
resources_id
|
Optional[str] | Unset
|
New resources ID for the rollout. If set, will be updated. Can be updated to None |
UNSET
|
status
|
RolloutStatus | Unset
|
New status for the rollout. If set, will be updated |
UNSET
|
config
|
RolloutConfig | Unset
|
New config for the rollout. If set, will be updated |
UNSET
|
metadata
|
Optional[Dict[str, Any]] | Unset
|
Dictionary of additional metadata to update. If set, will replace the existing metadata |
UNSET
|
Source code in agentlightning/store/base.py
wait_for_rollouts(*, rollout_ids, timeout=None)
async
¶
Wait for specified rollouts to complete with a timeout. Returns the completed rollouts, potentially incomplete if timeout is reached.
TODO: Add support for waiting for 20 new rollouts, or wait until 80% of the pending ids are completed.
Source code in agentlightning/store/base.py
ModelConfig
¶
Bases: TypedDict
LiteLLM model registration entry.
This mirrors the items in LiteLLM's model_list
section.
Attributes:
Name | Type | Description |
---|---|---|
model_name |
str
|
Logical model name exposed by the proxy. |
litellm_params |
Dict[str, Any]
|
Parameters passed to LiteLLM for this model (e.g., backend model id, api_base, additional options). |
Source code in agentlightning/llm_proxy.py
Rollout
¶
Bases: BaseModel
The standard reporting object from client to server.
Source code in agentlightning/types/core.py
RolloutConfig
¶
Bases: BaseModel
Configurations for rollout execution.
Source code in agentlightning/types/core.py
Task
¶
Bases: BaseModel
A task (rollout request) to be processed by the client agent.
Source code in agentlightning/types/core.py
TraceAdapter
¶
Bases: Adapter[List[Span], T_to]
, Generic[T_to]
Base class for adapters that convert trace spans into other formats.
This class specializes Adapter
for working with trace spans. It expects a list of
Agent-lightning spans as input and produces a custom target format
(e.g., reinforcement learning training data, SFT datasets, logs, metrics).
Source code in agentlightning/adapter/base.py
TraceTripletAdapter
¶
Bases: BaseTraceTripletAdapter
An adapter to convert OpenTelemetry spans to triplet data.
Attributes:
Name | Type | Description |
---|---|---|
repair_hierarchy |
When |
|
llm_call_match |
Regular expression pattern to match LLM call span names. |
|
agent_match |
Optional regular expression pattern to match agent span names. If None, all agents are matched. |
|
exclude_llm_call_in_reward |
Whether to exclude LLM calls that occur within reward spans. |
|
reward_match |
Policy for matching rewards to LLM calls. |
Source code in agentlightning/adapter/triplet.py
adapt(source)
¶
Convert OpenTelemetry spans to a list of Triplet objects.
Source code in agentlightning/adapter/triplet.py
visualize(source, /, filename='trace_tree', interested_span_match=None)
¶
Visualize the trace tree.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source
|
List[Span]
|
The list of OpenTelemetry spans to visualize. |
required |
filename
|
str
|
The base filename for the output visualization (default: "trace_tree"). |
'trace_tree'
|
interested_span_match
|
str | None
|
Optional regular expression pattern to highlight or focus on specific spans in the visualization. |
None
|
Returns:
Name | Type | Description |
---|---|---|
TraceTree |
TraceTree
|
The constructed trace tree object. |
Source code in agentlightning/adapter/triplet.py
get_left_padded_ids_and_attention_mask(ids, max_length, pad_token_id)
¶
Left-pad (or truncate) a sequence of token IDs to a fixed length, and build the corresponding attention mask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
List[int]
|
the original list of token IDs. |
required |
max_length
|
int
|
desired total length after padding/truncation. |
required |
pad_token_id
|
int
|
ID to use for padding. |
required |
Returns:
Name | Type | Description |
---|---|---|
padded_ids |
any
|
list of length == max_length. |
attention_mask |
any
|
list of same length: 1 for non-pad tokens, 0 for pads. |
Source code in agentlightning/verl/daemon.py
get_right_padded_ids_and_attention_mask(ids, max_length, pad_token_id)
¶
Right-pad (or truncate) a sequence of token IDs to a fixed length, and build the corresponding attention mask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ids
|
List[int]
|
the original list of token IDs. |
required |
max_length
|
int
|
desired total length after padding/truncation. |
required |
pad_token_id
|
int
|
ID to use for padding. |
required |
Returns:
Name | Type | Description |
---|---|---|
padded_ids |
any
|
list of length == max_length. |
attention_mask |
any
|
list of same length: 1 for non-pad tokens, 0 for pads. |