ai-agents-for-beginners

Eksploracja Frameworków Agentów AI

(Kliknij obrazek powyżej, aby obejrzeć wideo do tej lekcji)

Eksploracja Frameworków Agentów AI

Frameworki agentów AI to platformy programistyczne zaprojektowane, aby uprościć tworzenie, wdrażanie i zarządzanie agentami AI. Dostarczają one programistom gotowe komponenty, abstrakcje i narzędzia, które usprawniają rozwój złożonych systemów AI.

Frameworki te pozwalają programistom skupić się na unikalnych aspektach ich aplikacji, oferując ustandaryzowane podejścia do typowych wyzwań w rozwoju agentów AI. Zwiększają skalowalność, dostępność i efektywność w budowaniu systemów AI.

Wprowadzenie

W tej lekcji omówimy:

Cele nauki

Celem tej lekcji jest zrozumienie:

Czym są frameworki agentów AI i co umożliwiają programistom?

Tradycyjne frameworki AI mogą pomóc w integracji AI z aplikacjami i poprawić ich działanie w następujący sposób:

Brzmi świetnie, prawda? Więc dlaczego potrzebujemy frameworków agentów AI?

Frameworki agentów AI to coś więcej niż tylko frameworki AI. Są one zaprojektowane, aby umożliwić tworzenie inteligentnych agentów, którzy mogą wchodzić w interakcje z użytkownikami, innymi agentami i środowiskiem, aby osiągać określone cele. Agenci ci mogą wykazywać autonomiczne zachowanie, podejmować decyzje i dostosowywać się do zmieniających się warunków. Oto kluczowe możliwości oferowane przez frameworki agentów AI:

Podsumowując, agenci pozwalają robić więcej, przenosić automatyzację na wyższy poziom, tworzyć bardziej inteligentne systemy, które mogą się uczyć i dostosowywać do swojego środowiska.

Jak szybko prototypować, iterować i ulepszać możliwości agenta?

To dynamicznie rozwijająca się dziedzina, ale istnieją pewne wspólne elementy w większości frameworków agentów AI, które mogą pomóc w szybkim prototypowaniu i iteracji, takie jak modułowe komponenty, narzędzia do współpracy i uczenie się w czasie rzeczywistym. Przyjrzyjmy się im bliżej:

Wykorzystaj modułowe komponenty

SDK, takie jak Microsoft Semantic Kernel i LangChain, oferują gotowe komponenty, takie jak konektory AI, szablony podpowiedzi i zarządzanie pamięcią.

Jak zespoły mogą to wykorzystać: Zespoły mogą szybko złożyć te komponenty, aby stworzyć funkcjonalny prototyp bez konieczności zaczynania od zera, co pozwala na szybkie eksperymentowanie i iterację.

Jak to działa w praktyce: Możesz użyć gotowego parsera do wyodrębniania informacji z danych wejściowych użytkownika, modułu pamięci do przechowywania i pobierania danych oraz generatora podpowiedzi do interakcji z użytkownikami, wszystko bez konieczności budowania tych komponentów od podstaw.

Przykład kodu. Przyjrzyjmy się przykładom użycia gotowego konektora AI z Semantic Kernel w Pythonie i .Net, który wykorzystuje automatyczne wywoływanie funkcji, aby model odpowiadał na dane wejściowe użytkownika:

# Semantic Kernel Python Example

import asyncio
from typing import Annotated

from semantic_kernel.connectors.ai import FunctionChoiceBehavior
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion, AzureChatPromptExecutionSettings
from semantic_kernel.contents import ChatHistory
from semantic_kernel.functions import kernel_function
from semantic_kernel.kernel import Kernel

# Define a ChatHistory object to hold the conversation's context
chat_history = ChatHistory()
chat_history.add_user_message("I'd like to go to New York on January 1, 2025")


# Define a sample plugin that contains the function to book travel
class BookTravelPlugin:
    """A Sample Book Travel Plugin"""

    @kernel_function(name="book_flight", description="Book travel given location and date")
    async def book_flight(
        self, date: Annotated[str, "The date of travel"], location: Annotated[str, "The location to travel to"]
    ) -> str:
        return f"Travel was booked to {location} on {date}"

# Create the Kernel
kernel = Kernel()

# Add the sample plugin to the Kernel object
kernel.add_plugin(BookTravelPlugin(), plugin_name="book_travel")

# Define the Azure OpenAI AI Connector
chat_service = AzureChatCompletion(
    deployment_name="YOUR_DEPLOYMENT_NAME", 
    api_key="YOUR_API_KEY", 
    endpoint="https://<your-resource>.azure.openai.com/",
)

# Define the request settings to configure the model with auto-function calling
request_settings = AzureChatPromptExecutionSettings(function_choice_behavior=FunctionChoiceBehavior.Auto())


async def main():
    # Make the request to the model for the given chat history and request settings
    # The Kernel contains the sample that the model will request to invoke
    response = await chat_service.get_chat_message_content(
        chat_history=chat_history, settings=request_settings, kernel=kernel
    )
    assert response is not None

    """
    Note: In the auto function calling process, the model determines it can invoke the 
    `BookTravelPlugin` using the `book_flight` function, supplying the necessary arguments. 
    
    For example:

    "tool_calls": [
        {
            "id": "call_abc123",
            "type": "function",
            "function": {
                "name": "BookTravelPlugin-book_flight",
                "arguments": "{'location': 'New York', 'date': '2025-01-01'}"
            }
        }
    ]

    Since the location and date arguments are required (as defined by the kernel function), if the 
    model lacks either, it will prompt the user to provide them. For instance:

    User: Book me a flight to New York.
    Model: Sure, I'd love to help you book a flight. Could you please specify the date?
    User: I want to travel on January 1, 2025.
    Model: Your flight to New York on January 1, 2025, has been successfully booked. Safe travels!
    """

    print(f"`{response}`")
    # Example AI Model Response: `Your flight to New York on January 1, 2025, has been successfully booked. Safe travels! ✈️🗽`

    # Add the model's response to our chat history context
    chat_history.add_assistant_message(response.content)


if __name__ == "__main__":
    asyncio.run(main())
// Semantic Kernel C# example

using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.ChatCompletion;
using System.ComponentModel;
using Microsoft.SemanticKernel.Connectors.AzureOpenAI;

ChatHistory chatHistory = [];
chatHistory.AddUserMessage("I'd like to go to New York on January 1, 2025");

var kernelBuilder = Kernel.CreateBuilder();
kernelBuilder.AddAzureOpenAIChatCompletion(
    deploymentName: "NAME_OF_YOUR_DEPLOYMENT",
    apiKey: "YOUR_API_KEY",
    endpoint: "YOUR_AZURE_ENDPOINT"
);
kernelBuilder.Plugins.AddFromType<BookTravelPlugin>("BookTravel"); 
var kernel = kernelBuilder.Build();

var settings = new AzureOpenAIPromptExecutionSettings()
{
    FunctionChoiceBehavior = FunctionChoiceBehavior.Auto()
};

var chatCompletion = kernel.GetRequiredService<IChatCompletionService>();

var response = await chatCompletion.GetChatMessageContentAsync(chatHistory, settings, kernel);

/*
Behind the scenes, the model recognizes the tool to call, what arguments it already has (location) and (date)
{

"tool_calls": [
    {
        "id": "call_abc123",
        "type": "function",
        "function": {
            "name": "BookTravelPlugin-book_flight",
            "arguments": "{'location': 'New York', 'date': '2025-01-01'}"
        }
    }
]
*/

Console.WriteLine(response.Content);
chatHistory.AddMessage(response!.Role, response!.Content!);

// Example AI Model Response: Your flight to New York on January 1, 2025, has been successfully booked. Safe travels! ✈️🗽

// Define a plugin that contains the function to book travel
public class BookTravelPlugin
{
    [KernelFunction("book_flight")]
    [Description("Book travel given location and date")]
    public async Task<string> BookFlight(DateTime date, string location)
    {
        return await Task.FromResult( $"Travel was booked to {location} on {date}");
    }
}

W tym przykładzie widać, jak można wykorzystać gotowy parser do wyodrębniania kluczowych informacji z danych wejściowych użytkownika, takich jak miejsce początkowe, miejsce docelowe i data rezerwacji lotu. Takie modułowe podejście pozwala skupić się na logice wysokiego poziomu.

Wykorzystaj narzędzia do współpracy

Frameworki, takie jak CrewAI, Microsoft AutoGen i Semantic Kernel, ułatwiają tworzenie wielu agentów, którzy mogą współpracować.

Jak zespoły mogą to wykorzystać: Zespoły mogą projektować agentów z określonymi rolami i zadaniami, umożliwiając testowanie i udoskonalanie przepływów współpracy oraz poprawę ogólnej efektywności systemu.

Jak to działa w praktyce: Możesz stworzyć zespół agentów, gdzie każdy agent ma wyspecjalizowaną funkcję, taką jak pobieranie danych, analiza lub podejmowanie decyzji. Agenci ci mogą komunikować się i wymieniać informacje, aby osiągnąć wspólny cel, na przykład odpowiedzieć na zapytanie użytkownika lub wykonać zadanie.

Przykład kodu (AutoGen):

# creating agents, then create a round robin schedule where they can work together, in this case in order

# Data Retrieval Agent
# Data Analysis Agent
# Decision Making Agent

agent_retrieve = AssistantAgent(
    name="dataretrieval",
    model_client=model_client,
    tools=[retrieve_tool],
    system_message="Use tools to solve tasks."
)

agent_analyze = AssistantAgent(
    name="dataanalysis",
    model_client=model_client,
    tools=[analyze_tool],
    system_message="Use tools to solve tasks."
)

# conversation ends when user says "APPROVE"
termination = TextMentionTermination("APPROVE")

user_proxy = UserProxyAgent("user_proxy", input_func=input)

team = RoundRobinGroupChat([agent_retrieve, agent_analyze, user_proxy], termination_condition=termination)

stream = team.run_stream(task="Analyze data", max_turns=10)
# Use asyncio.run(...) when running in a script.
await Console(stream)

W poprzednim kodzie widać, jak można stworzyć zadanie, które obejmuje współpracę wielu agentów analizujących dane. Każdy agent wykonuje określoną funkcję, a zadanie jest realizowane poprzez koordynację działań agentów w celu osiągnięcia pożądanego wyniku. Tworząc dedykowanych agentów z wyspecjalizowanymi rolami, można poprawić efektywność i wydajność zadań.

Ucz się w czasie rzeczywistym

Zaawansowane frameworki oferują możliwości zrozumienia kontekstu i adaptacji w czasie rzeczywistym.

Jak zespoły mogą to wykorzystać: Zespoły mogą wdrażać pętle sprzężenia zwrotnego, w których agenci uczą się na podstawie interakcji i dynamicznie dostosowują swoje zachowanie, co prowadzi do ciągłego doskonalenia i udoskonalania możliwości.

Jak to działa w praktyce: Agenci mogą analizować opinie użytkowników, dane środowiskowe i wyniki zadań, aby aktualizować swoją bazę wiedzy, dostosowywać algorytmy podejmowania decyzji i poprawiać wydajność w czasie. Ten iteracyjny proces uczenia się pozwala agentom dostosowywać się do zmieniających się warunków i preferencji użytkowników, zwiększając ogólną skuteczność systemu.

Jakie są różnice między frameworkami AutoGen, Semantic Kernel i Azure AI Agent Service?

Istnieje wiele sposobów porównania tych frameworków, ale przyjrzyjmy się kluczowym różnicom w zakresie ich projektowania, możliwości i docelowych przypadków użycia:

AutoGen

AutoGen to framework open-source opracowany przez Microsoft Research’s AI Frontiers Lab. Skupia się na aplikacjach agentowych opartych na zdarzeniach, rozproszonych, umożliwiając wykorzystanie wielu LLM, SLM, narzędzi i zaawansowanych wzorców projektowych dla wielu agentów.

AutoGen opiera się na podstawowej koncepcji agentów, czyli autonomicznych jednostek, które mogą postrzegać swoje środowisko, podejmować decyzje i podejmować działania w celu osiągnięcia określonych celów. Agenci komunikują się za pomocą asynchronicznych wiadomości, co pozwala im działać niezależnie i równolegle, zwiększając skalowalność i responsywność systemu.

Według Wikipedii, aktor to podstawowy element obliczeń współbieżnych. W odpowiedzi na otrzymaną wiadomość aktor może: podejmować lokalne decyzje, tworzyć więcej aktorów, wysyłać więcej wiadomości i określać, jak odpowiedzieć na kolejną otrzymaną wiadomość.

Przypadki użycia: Automatyzacja generowania kodu, zadania analizy danych, budowanie niestandardowych agentów do funkcji planowania i badań.

Oto kilka ważnych podstawowych koncepcji AutoGen:

Semantic Kernel + Framework Agentów

Semantic Kernel to gotowe do zastosowań w przedsiębiorstwach SDK do orkiestracji AI. Składa się z konektorów AI i pamięci oraz Frameworka Agentów.

Najpierw omówmy kilka podstawowych komponentów:

Azure AI Agent Service to nowszy dodatek, wprowadzony na Microsoft Ignite 2024. Umożliwia rozwój i wdrażanie agentów AI z bardziej elastycznymi modelami, takimi jak bezpośrednie wywoływanie otwartoźródłowych LLM-ów, takich jak Llama 3, Mistral i Cohere.

Azure AI Agent Service oferuje silniejsze mechanizmy bezpieczeństwa dla przedsiębiorstw oraz metody przechowywania danych, co czyni go odpowiednim dla zastosowań korporacyjnych.

Działa od razu po instalacji z frameworkami do orkiestracji wieloagentowej, takimi jak AutoGen i Semantic Kernel.

Usługa ta jest obecnie dostępna w Public Preview i obsługuje języki Python oraz C# do budowy agentów.

Korzystając z Semantic Kernel Python, możemy stworzyć agenta Azure AI z wtyczką zdefiniowaną przez użytkownika:

import asyncio
from typing import Annotated

from azure.identity.aio import DefaultAzureCredential

from semantic_kernel.agents import AzureAIAgent, AzureAIAgentSettings, AzureAIAgentThread
from semantic_kernel.contents import ChatMessageContent
from semantic_kernel.contents import AuthorRole
from semantic_kernel.functions import kernel_function


# Define a sample plugin for the sample
class MenuPlugin:
    """A sample Menu Plugin used for the concept sample."""

    @kernel_function(description="Provides a list of specials from the menu.")
    def get_specials(self) -> Annotated[str, "Returns the specials from the menu."]:
        return """
        Special Soup: Clam Chowder
        Special Salad: Cobb Salad
        Special Drink: Chai Tea
        """

    @kernel_function(description="Provides the price of the requested menu item.")
    def get_item_price(
        self, menu_item: Annotated[str, "The name of the menu item."]
    ) -> Annotated[str, "Returns the price of the menu item."]:
        return "$9.99"


async def main() -> None:
    ai_agent_settings = AzureAIAgentSettings.create()

    async with (
        DefaultAzureCredential() as creds,
        AzureAIAgent.create_client(
            credential=creds,
            conn_str=ai_agent_settings.project_connection_string.get_secret_value(),
        ) as client,
    ):
        # Create agent definition
        agent_definition = await client.agents.create_agent(
            model=ai_agent_settings.model_deployment_name,
            name="Host",
            instructions="Answer questions about the menu.",
        )

        # Create the AzureAI Agent using the defined client and agent definition
        agent = AzureAIAgent(
            client=client,
            definition=agent_definition,
            plugins=[MenuPlugin()],
        )

        # Create a thread to hold the conversation
        # If no thread is provided, a new thread will be
        # created and returned with the initial response
        thread: AzureAIAgentThread | None = None

        user_inputs = [
            "Hello",
            "What is the special soup?",
            "How much does that cost?",
            "Thank you",
        ]

        try:
            for user_input in user_inputs:
                print(f"# User: '{user_input}'")
                # Invoke the agent for the specified thread
                response = await agent.get_response(
                    messages=user_input,
                    thread_id=thread,
                )
                print(f"# {response.name}: {response.content}")
                thread = response.thread
        finally:
            await thread.delete() if thread else None
            await client.agents.delete_agent(agent.id)


if __name__ == "__main__":
    asyncio.run(main())

Kluczowe pojęcia

Azure AI Agent Service opiera się na następujących kluczowych pojęciach:

Zastosowania: Azure AI Agent Service jest przeznaczona dla aplikacji korporacyjnych, które wymagają bezpiecznego, skalowalnego i elastycznego wdrażania agentów AI.

Czym różnią się te frameworki?

Może się wydawać, że te frameworki mają wiele wspólnego, ale istnieją kluczowe różnice w ich projektowaniu, możliwościach i docelowych zastosowaniach:

Nie jesteś pewien, który wybrać?

Zastosowania

Spróbujmy pomóc, przechodząc przez kilka typowych scenariuszy:

P: Eksperymentuję, uczę się i buduję aplikacje agentowe jako proof-of-concept, i chcę szybko budować i eksperymentować.

O: AutoGen będzie dobrym wyborem w tym scenariuszu, ponieważ koncentruje się na aplikacjach agentowych opartych na zdarzeniach i obsługuje zaawansowane wzorce projektowe dla systemów wieloagentowych.

P: Dlaczego AutoGen jest lepszym wyborem niż Semantic Kernel i Azure AI Agent Service w tym przypadku?

O: AutoGen został specjalnie zaprojektowany do aplikacji agentowych opartych na zdarzeniach, co czyni go dobrze dopasowanym do automatyzacji zadań generowania kodu i analizy danych. Zapewnia niezbędne narzędzia i możliwości do efektywnego budowania złożonych systemów wieloagentowych.

P: Brzmi, jakby Azure AI Agent Service też się tu sprawdził, ma narzędzia do generowania kodu i więcej?

O: Tak, Azure AI Agent Service to platforma dla agentów z wbudowanymi możliwościami obsługi wielu modeli, Azure AI Search, Bing Search i Azure Functions. Ułatwia budowanie agentów w Foundry Portal i wdrażanie ich na dużą skalę.

P: Nadal jestem zdezorientowany, po prostu podaj mi jedną opcję.

O: Świetnym wyborem jest najpierw zbudowanie aplikacji w Semantic Kernel, a następnie użycie Azure AI Agent Service do wdrożenia agenta. Takie podejście pozwala łatwo utrwalić agentów, jednocześnie wykorzystując możliwości budowy systemów wieloagentowych w Semantic Kernel. Dodatkowo, Semantic Kernel ma konektor w AutoGen, co ułatwia korzystanie z obu frameworków razem.

Podsumujmy kluczowe różnice w tabeli:

Framework Skupienie Kluczowe pojęcia Zastosowania
AutoGen Aplikacje agentowe oparte na zdarzeniach, rozproszone Agenci, Persony, Funkcje, Dane Generowanie kodu, zadania analizy danych
Semantic Kernel Rozumienie i generowanie treści podobnych do ludzkich Agenci, Modułowe komponenty, Współpraca Rozumienie języka naturalnego, generowanie treści
Azure AI Agent Service Elastyczne modele, bezpieczeństwo korporacyjne, Generowanie kodu, Wywoływanie narzędzi Modularność, Współpraca, Orkiestracja procesów Bezpieczne, skalowalne i elastyczne wdrażanie agentów AI

Jakie są idealne zastosowania dla każdego z tych frameworków?

Czy mogę bezpośrednio zintegrować moje istniejące narzędzia z ekosystemu Azure, czy potrzebuję oddzielnych rozwiązań?

Odpowiedź brzmi: tak, możesz bezpośrednio zintegrować swoje istniejące narzędzia z ekosystemu Azure z Azure AI Agent Service, zwłaszcza że została ona zaprojektowana do bezproblemowej współpracy z innymi usługami Azure. Możesz na przykład zintegrować Bing, Azure AI Search i Azure Functions. Istnieje również głęboka integracja z Azure AI Foundry.

W przypadku AutoGen i Semantic Kernel również możesz integrować się z usługami Azure, ale może to wymagać wywoływania usług Azure z poziomu kodu. Innym sposobem integracji jest użycie SDK Azure do interakcji z usługami Azure z poziomu agentów. Dodatkowo, jak wspomniano, możesz użyć Azure AI Agent Service jako orkiestratora dla agentów zbudowanych w AutoGen lub Semantic Kernel, co zapewni łatwy dostęp do ekosystemu Azure.

Masz więcej pytań dotyczących frameworków agentów AI?

Dołącz do Azure AI Foundry Discord, aby spotkać się z innymi uczącymi się, uczestniczyć w godzinach konsultacji i uzyskać odpowiedzi na pytania dotyczące agentów AI.

Źródła

Poprzednia lekcja

Wprowadzenie do agentów AI i ich zastosowań

Następna lekcja

Zrozumienie wzorców projektowych agentów


Zastrzeżenie:
Ten dokument został przetłumaczony za pomocą usługi tłumaczeniowej AI Co-op Translator. Chociaż dokładamy wszelkich starań, aby tłumaczenie było precyzyjne, prosimy pamiętać, że automatyczne tłumaczenia mogą zawierać błędy lub nieścisłości. Oryginalny dokument w jego rodzimym języku powinien być uznawany za wiarygodne źródło. W przypadku informacji krytycznych zaleca się skorzystanie z profesjonalnego tłumaczenia wykonanego przez człowieka. Nie ponosimy odpowiedzialności za jakiekolwiek nieporozumienia lub błędne interpretacje wynikające z korzystania z tego tłumaczenia.