ai-agents-for-beginners

🎨 使用 GitHub 模型的智能代理设计模式 (.NET)

📋 学习目标

此示例展示了使用 Microsoft Agent Framework 和 GitHub 模型集成在 .NET 中构建智能代理的企业级设计模式。您将学习专业的设计模式和架构方法,使代理具备生产级别的准备、可维护性和可扩展性。

企业设计模式

🎯 .NET 特定架构优势

企业功能

生产级设计模式

🔧 技术架构

核心 .NET 组件

设计模式实现

graph LR
    A[IServiceCollection] --> B[Agent Builder]
    B --> C[Configuration]
    C --> D[Tool Registry]
    D --> E[AI Agent]

🏗️ 展示的企业模式

1. 创建型模式

2. 行为型模式

3. 结构型模式

📚 .NET 设计原则

SOLID 原则

清晰架构

🔒 企业级考虑

安全性

性能

可扩展性

🚀 生产部署

准备好使用 .NET 构建企业级智能代理了吗?让我们设计一些强大的架构吧! 🏢✨

🚀 开始使用

前提条件

所需环境变量

# zsh/bash
export GH_TOKEN=<your_github_token>
export GH_ENDPOINT=https://models.github.ai/inference
export GH_MODEL_ID=openai/gpt-5-mini
# PowerShell
$env:GH_TOKEN = "<your_github_token>"
$env:GH_ENDPOINT = "https://models.github.ai/inference"
$env:GH_MODEL_ID = "openai/gpt-5-mini"

示例代码

运行代码示例,

# zsh/bash
chmod +x ./03-dotnet-agent-framework.cs
./03-dotnet-agent-framework.cs

或者使用 dotnet CLI:

dotnet run ./03-dotnet-agent-framework.cs

查看 03-dotnet-agent-framework.cs 获取完整代码。

#!/usr/bin/dotnet run

#:package Microsoft.Extensions.AI@10.*
#:package Microsoft.Agents.AI.OpenAI@1.*-*

using System.ClientModel;
using System.ComponentModel;

using Microsoft.Agents.AI;
using Microsoft.Extensions.AI;

using OpenAI;

// Tool Function: Random Destination Generator
// This static method will be available to the agent as a callable tool
// The [Description] attribute helps the AI understand when to use this function
// This demonstrates how to create custom tools for AI agents
[Description("Provides a random vacation destination.")]
static string GetRandomDestination()
{
    // List of popular vacation destinations around the world
    // The agent will randomly select from these options
    var destinations = new List<string>
    {
        "Paris, France",
        "Tokyo, Japan",
        "New York City, USA",
        "Sydney, Australia",
        "Rome, Italy",
        "Barcelona, Spain",
        "Cape Town, South Africa",
        "Rio de Janeiro, Brazil",
        "Bangkok, Thailand",
        "Vancouver, Canada"
    };

    // Generate random index and return selected destination
    // Uses System.Random for simple random selection
    var random = new Random();
    int index = random.Next(destinations.Count);
    return destinations[index];
}

// Extract configuration from environment variables
// Retrieve the GitHub Models API endpoint, defaults to https://models.github.ai/inference if not specified
// Retrieve the model ID, defaults to openai/gpt-5-mini if not specified
// Retrieve the GitHub token for authentication, throws exception if not specified
var github_endpoint = Environment.GetEnvironmentVariable("GH_ENDPOINT") ?? "https://models.github.ai/inference";
var github_model_id = Environment.GetEnvironmentVariable("GH_MODEL_ID") ?? "openai/gpt-5-mini";
var github_token = Environment.GetEnvironmentVariable("GH_TOKEN") ?? throw new InvalidOperationException("GH_TOKEN is not set.");

// Configure OpenAI Client Options
// Create configuration options to point to GitHub Models endpoint
// This redirects OpenAI client calls to GitHub's model inference service
var openAIOptions = new OpenAIClientOptions()
{
    Endpoint = new Uri(github_endpoint)
};

// Initialize OpenAI Client with GitHub Models Configuration
// Create OpenAI client using GitHub token for authentication
// Configure it to use GitHub Models endpoint instead of OpenAI directly
var openAIClient = new OpenAIClient(new ApiKeyCredential(github_token), openAIOptions);

// Define Agent Identity and Comprehensive Instructions
// Agent name for identification and logging purposes
var AGENT_NAME = "TravelAgent";

// Detailed instructions that define the agent's personality, capabilities, and behavior
// This system prompt shapes how the agent responds and interacts with users
var AGENT_INSTRUCTIONS = """
You are a helpful AI Agent that can help plan vacations for customers.

Important: When users specify a destination, always plan for that location. Only suggest random destinations when the user hasn't specified a preference.

When the conversation begins, introduce yourself with this message:
"Hello! I'm your TravelAgent assistant. I can help plan vacations and suggest interesting destinations for you. Here are some things you can ask me:
1. Plan a day trip to a specific location
2. Suggest a random vacation destination
3. Find destinations with specific features (beaches, mountains, historical sites, etc.)
4. Plan an alternative trip if you don't like my first suggestion

What kind of trip would you like me to help you plan today?"

Always prioritize user preferences. If they mention a specific destination like "Bali" or "Paris," focus your planning on that location rather than suggesting alternatives.
""";

// Create AI Agent with Advanced Travel Planning Capabilities
// Initialize complete agent pipeline: OpenAI client → Chat client → AI agent
// Configure agent with name, detailed instructions, and available tools
// This demonstrates the .NET agent creation pattern with full configuration
AIAgent agent = openAIClient
    .GetChatClient(github_model_id)
    .CreateAIAgent(
        name: AGENT_NAME,
        instructions: AGENT_INSTRUCTIONS,
        tools: [AIFunctionFactory.Create(GetRandomDestination)]
    );

// Create New Conversation Thread for Context Management
// Initialize a new conversation thread to maintain context across multiple interactions
// Threads enable the agent to remember previous exchanges and maintain conversational state
// This is essential for multi-turn conversations and contextual understanding
AgentThread thread = agent.GetNewThread();

// Execute Agent: First Travel Planning Request
// Run the agent with an initial request that will likely trigger the random destination tool
// The agent will analyze the request, use the GetRandomDestination tool, and create an itinerary
// Using the thread parameter maintains conversation context for subsequent interactions
await foreach (var update in agent.RunStreamingAsync("Plan me a day trip", thread))
{
    await Task.Delay(10);
    Console.Write(update);
}

Console.WriteLine();

// Execute Agent: Follow-up Request with Context Awareness
// Demonstrate contextual conversation by referencing the previous response
// The agent remembers the previous destination suggestion and will provide an alternative
// This showcases the power of conversation threads and contextual understanding in .NET agents
await foreach (var update in agent.RunStreamingAsync("I don't like that destination. Plan me another vacation.", thread))
{
    await Task.Delay(10);
    Console.Write(update);
}

免责声明
本文档使用AI翻译服务Co-op Translator进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而引起的任何误解或误读,我们概不负责。