import asyncio
import logging
import uuid
from abc import ABC, abstractmethod
from typing import Any, AsyncGenerator, Callable, List, Mapping
from autogen_core import (
AgentId,
AgentInstantiationContext,
AgentRuntime,
AgentType,
CancellationToken,
ClosureAgent,
MessageContext,
SingleThreadedAgentRuntime,
TypeSubscription,
)
from autogen_core._closure_agent import ClosureContext
from ... import EVENT_LOGGER_NAME
from ...base import ChatAgent, TaskResult, Team, TerminationCondition
from ...messages import AgentMessage, ChatMessage, HandoffMessage, MultiModalMessage, StopMessage, TextMessage
from ...state import TeamState
from ._chat_agent_container import ChatAgentContainer
from ._events import GroupChatMessage, GroupChatReset, GroupChatStart, GroupChatTermination
from ._sequential_routed_agent import SequentialRoutedAgent
event_logger = logging.getLogger(EVENT_LOGGER_NAME)
[docs]
class BaseGroupChat(Team, ABC):
"""The base class for group chat teams.
To implement a group chat team, first create a subclass of :class:`BaseGroupChatManager` and then
create a subclass of :class:`BaseGroupChat` that uses the group chat manager.
"""
def __init__(
self,
participants: List[ChatAgent],
group_chat_manager_class: type[SequentialRoutedAgent],
termination_condition: TerminationCondition | None = None,
max_turns: int | None = None,
):
if len(participants) == 0:
raise ValueError("At least one participant is required.")
if len(participants) != len(set(participant.name for participant in participants)):
raise ValueError("The participant names must be unique.")
self._participants = participants
self._base_group_chat_manager_class = group_chat_manager_class
self._termination_condition = termination_condition
self._max_turns = max_turns
# Constants for the group chat.
self._team_id = str(uuid.uuid4())
self._group_topic_type = "group_topic"
self._output_topic_type = "output_topic"
self._group_chat_manager_topic_type = "group_chat_manager"
self._participant_topic_types: List[str] = [participant.name for participant in participants]
self._participant_descriptions: List[str] = [participant.description for participant in participants]
self._collector_agent_type = "collect_output_messages"
# Constants for the closure agent to collect the output messages.
self._stop_reason: str | None = None
self._output_message_queue: asyncio.Queue[AgentMessage | None] = asyncio.Queue()
# Create a runtime for the team.
# TODO: The runtime should be created by a managed context.
self._runtime = SingleThreadedAgentRuntime()
# Flag to track if the group chat has been initialized.
self._initialized = False
# Flag to track if the group chat is running.
self._is_running = False
@abstractmethod
def _create_group_chat_manager_factory(
self,
group_topic_type: str,
output_topic_type: str,
participant_topic_types: List[str],
participant_descriptions: List[str],
termination_condition: TerminationCondition | None,
max_turns: int | None,
) -> Callable[[], SequentialRoutedAgent]: ...
def _create_participant_factory(
self,
parent_topic_type: str,
output_topic_type: str,
agent: ChatAgent,
) -> Callable[[], ChatAgentContainer]:
def _factory() -> ChatAgentContainer:
id = AgentInstantiationContext.current_agent_id()
assert id == AgentId(type=agent.name, key=self._team_id)
container = ChatAgentContainer(parent_topic_type, output_topic_type, agent)
assert container.id == id
return container
return _factory
async def _init(self, runtime: AgentRuntime) -> None:
# Constants for the group chat manager.
group_chat_manager_agent_type = AgentType(self._group_chat_manager_topic_type)
# Register participants.
for participant, participant_topic_type in zip(self._participants, self._participant_topic_types, strict=False):
# Use the participant topic type as the agent type.
agent_type = participant_topic_type
# Register the participant factory.
await ChatAgentContainer.register(
runtime,
type=agent_type,
factory=self._create_participant_factory(self._group_topic_type, self._output_topic_type, participant),
)
# Add subscriptions for the participant.
await runtime.add_subscription(TypeSubscription(topic_type=participant_topic_type, agent_type=agent_type))
await runtime.add_subscription(TypeSubscription(topic_type=self._group_topic_type, agent_type=agent_type))
# Register the group chat manager.
await self._base_group_chat_manager_class.register(
runtime,
type=group_chat_manager_agent_type.type,
factory=self._create_group_chat_manager_factory(
group_topic_type=self._group_topic_type,
output_topic_type=self._output_topic_type,
participant_topic_types=self._participant_topic_types,
participant_descriptions=self._participant_descriptions,
termination_condition=self._termination_condition,
max_turns=self._max_turns,
),
)
# Add subscriptions for the group chat manager.
await runtime.add_subscription(
TypeSubscription(
topic_type=self._group_chat_manager_topic_type, agent_type=group_chat_manager_agent_type.type
)
)
await runtime.add_subscription(
TypeSubscription(topic_type=self._group_topic_type, agent_type=group_chat_manager_agent_type.type)
)
async def collect_output_messages(
_runtime: ClosureContext,
message: GroupChatStart | GroupChatMessage | GroupChatTermination,
ctx: MessageContext,
) -> None:
event_logger.info(message.message)
if isinstance(message, GroupChatTermination):
self._stop_reason = message.message.content
return
await self._output_message_queue.put(message.message)
await ClosureAgent.register_closure(
runtime,
type=self._collector_agent_type,
closure=collect_output_messages,
subscriptions=lambda: [
TypeSubscription(topic_type=self._output_topic_type, agent_type=self._collector_agent_type),
],
)
self._initialized = True
[docs]
async def run(
self,
*,
task: str | ChatMessage | None = None,
cancellation_token: CancellationToken | None = None,
) -> TaskResult:
"""Run the team and return the result. The base implementation uses
:meth:`run_stream` to run the team and then returns the final result.
Once the team is stopped, the termination condition is reset.
Args:
task (str | ChatMessage | None): The task to run the team with.
cancellation_token (CancellationToken | None): The cancellation token to kill the task immediately.
Setting the cancellation token potentially put the team in an inconsistent state,
and it may not reset the termination condition.
To gracefully stop the team, use :class:`~autogen_agentchat.conditions.ExternalTermination` instead.
Example using the :class:`~autogen_agentchat.teams.RoundRobinGroupChat` team:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
result = await team.run(task="Count from 1 to 10, respond one at a time.")
print(result)
# Run the team again without a task to continue the previous task.
result = await team.run()
print(result)
asyncio.run(main())
Example using the :class:`~autogen_core.CancellationToken` to cancel the task:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_core import CancellationToken
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
cancellation_token = CancellationToken()
# Create a task to run the team in the background.
run_task = asyncio.create_task(
team.run(
task="Count from 1 to 10, respond one at a time.",
cancellation_token=cancellation_token,
)
)
# Wait for 1 second and then cancel the task.
await asyncio.sleep(1)
cancellation_token.cancel()
# This will raise a cancellation error.
await run_task
asyncio.run(main())
"""
result: TaskResult | None = None
async for message in self.run_stream(
task=task,
cancellation_token=cancellation_token,
):
if isinstance(message, TaskResult):
result = message
if result is not None:
return result
raise AssertionError("The stream should have returned the final result.")
[docs]
async def run_stream(
self,
*,
task: str | ChatMessage | None = None,
cancellation_token: CancellationToken | None = None,
) -> AsyncGenerator[AgentMessage | TaskResult, None]:
"""Run the team and produces a stream of messages and the final result
of the type :class:`TaskResult` as the last item in the stream. Once the
team is stopped, the termination condition is reset.
Args:
task (str | ChatMessage | None): The task to run the team with.
cancellation_token (CancellationToken | None): The cancellation token to kill the task immediately.
Setting the cancellation token potentially put the team in an inconsistent state,
and it may not reset the termination condition.
To gracefully stop the team, use :class:`~autogen_agentchat.conditions.ExternalTermination` instead.
Example using the :class:`~autogen_agentchat.teams.RoundRobinGroupChat` team:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
stream = team.run_stream(task="Count from 1 to 10, respond one at a time.")
async for message in stream:
print(message)
# Run the team again without a task to continue the previous task.
stream = team.run_stream()
async for message in stream:
print(message)
asyncio.run(main())
Example using the :class:`~autogen_core.CancellationToken` to cancel the task:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.ui import Console
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_core import CancellationToken
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
cancellation_token = CancellationToken()
# Create a task to run the team in the background.
run_task = asyncio.create_task(
Console(
team.run_stream(
task="Count from 1 to 10, respond one at a time.",
cancellation_token=cancellation_token,
)
)
)
# Wait for 1 second and then cancel the task.
await asyncio.sleep(1)
cancellation_token.cancel()
# This will raise a cancellation error.
await run_task
asyncio.run(main())
"""
# Create the first chat message if the task is a string or a chat message.
first_chat_message: ChatMessage | None = None
if task is None:
pass
elif isinstance(task, str):
first_chat_message = TextMessage(content=task, source="user")
elif isinstance(task, TextMessage | MultiModalMessage | StopMessage | HandoffMessage):
first_chat_message = task
else:
raise ValueError(f"Invalid task type: {type(task)}")
if self._is_running:
raise ValueError("The team is already running, it cannot run again until it is stopped.")
self._is_running = True
# Start the runtime.
# TODO: The runtime should be started by a managed context.
self._runtime.start()
if not self._initialized:
await self._init(self._runtime)
# Start a coroutine to stop the runtime and signal the output message queue is complete.
async def stop_runtime() -> None:
await self._runtime.stop_when_idle()
await self._output_message_queue.put(None)
shutdown_task = asyncio.create_task(stop_runtime())
try:
# Run the team by sending the start message to the group chat manager.
# The group chat manager will start the group chat by relaying the message to the participants
# and the closure agent.
await self._runtime.send_message(
GroupChatStart(message=first_chat_message),
recipient=AgentId(type=self._group_chat_manager_topic_type, key=self._team_id),
cancellation_token=cancellation_token,
)
# Collect the output messages in order.
output_messages: List[AgentMessage] = []
# Yield the messsages until the queue is empty.
while True:
message_future = asyncio.ensure_future(self._output_message_queue.get())
if cancellation_token is not None:
cancellation_token.link_future(message_future)
# Wait for the next message, this will raise an exception if the task is cancelled.
message = await message_future
if message is None:
break
yield message
output_messages.append(message)
# Yield the final result.
yield TaskResult(messages=output_messages, stop_reason=self._stop_reason)
finally:
# Wait for the shutdown task to finish.
await shutdown_task
# Clear the output message queue.
while not self._output_message_queue.empty():
self._output_message_queue.get_nowait()
# Indicate that the team is no longer running.
self._is_running = False
[docs]
async def reset(self) -> None:
"""Reset the team and its participants to their initial state.
The team must be stopped before it can be reset.
Raises:
RuntimeError: If the team has not been initialized or is currently running.
Example using the :class:`~autogen_agentchat.teams.RoundRobinGroupChat` team:
.. code-block:: python
import asyncio
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("Assistant1", model_client=model_client)
agent2 = AssistantAgent("Assistant2", model_client=model_client)
termination = MaxMessageTermination(3)
team = RoundRobinGroupChat([agent1, agent2], termination_condition=termination)
stream = team.run_stream(task="Count from 1 to 10, respond one at a time.")
async for message in stream:
print(message)
# Reset the team.
await team.reset()
stream = team.run_stream(task="Count from 1 to 10, respond one at a time.")
async for message in stream:
print(message)
asyncio.run(main())
"""
if not self._initialized:
raise RuntimeError("The group chat has not been initialized. It must be run before it can be reset.")
if self._is_running:
raise RuntimeError("The group chat is currently running. It must be stopped before it can be reset.")
self._is_running = True
# Start the runtime.
self._runtime.start()
try:
# Send a reset messages to all participants.
for participant_topic_type in self._participant_topic_types:
await self._runtime.send_message(
GroupChatReset(),
recipient=AgentId(type=participant_topic_type, key=self._team_id),
)
# Send a reset message to the group chat manager.
await self._runtime.send_message(
GroupChatReset(),
recipient=AgentId(type=self._group_chat_manager_topic_type, key=self._team_id),
)
finally:
# Stop the runtime.
await self._runtime.stop_when_idle()
# Reset the output message queue.
self._stop_reason = None
while not self._output_message_queue.empty():
self._output_message_queue.get_nowait()
# Indicate that the team is no longer running.
self._is_running = False
[docs]
async def save_state(self) -> Mapping[str, Any]:
"""Save the state of the group chat team."""
if not self._initialized:
raise RuntimeError("The group chat has not been initialized. It must be run before it can be saved.")
if self._is_running:
raise RuntimeError("The team cannot be saved while it is running.")
self._is_running = True
try:
# Save the state of the runtime. This will save the state of the participants and the group chat manager.
agent_states = await self._runtime.save_state()
return TeamState(agent_states=agent_states, team_id=self._team_id).model_dump()
finally:
# Indicate that the team is no longer running.
self._is_running = False
[docs]
async def load_state(self, state: Mapping[str, Any]) -> None:
"""Load the state of the group chat team."""
if not self._initialized:
await self._init(self._runtime)
if self._is_running:
raise RuntimeError("The team cannot be loaded while it is running.")
self._is_running = True
try:
# Load the state of the runtime. This will load the state of the participants and the group chat manager.
team_state = TeamState.model_validate(state)
self._team_id = team_state.team_id
await self._runtime.load_state(team_state.agent_states)
finally:
# Indicate that the team is no longer running.
self._is_running = False