{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Structured output using GPT-4o models\n", "\n", "This cookbook demonstrates how to obtain structured output using GPT-4o models. The OpenAI beta client SDK provides a parse helper that allows you to use your own Pydantic model, eliminating the need to define a JSON schema. This approach is recommended for supported models.\n", "\n", "Currently, this feature is supported for:\n", "\n", "- gpt-4o-mini on OpenAI\n", "- gpt-4o-2024-08-06 on OpenAI\n", "- gpt-4o-2024-08-06 on Azure" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define a simple message type that carries explanation and output for a Math problem" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "from pydantic import BaseModel\n", "\n", "\n", "class MathReasoning(BaseModel):\n", " class Step(BaseModel):\n", " explanation: str\n", " output: str\n", "\n", " steps: list[Step]\n", " final_answer: str" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import os\n", "\n", "# Set the environment variable\n", "os.environ[\"AZURE_OPENAI_ENDPOINT\"] = \"https://YOUR_ENDPOINT_DETAILS.openai.azure.com/\"\n", "os.environ[\"AZURE_OPENAI_API_KEY\"] = \"YOUR_API_KEY\"\n", "os.environ[\"AZURE_OPENAI_DEPLOYMENT_NAME\"] = \"gpt-4o-2024-08-06\"\n", "os.environ[\"AZURE_OPENAI_API_VERSION\"] = \"2024-08-01-preview\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "import os\n", "from typing import Optional\n", "\n", "from autogen_core.models import UserMessage\n", "from autogen_ext.models.openai import AzureOpenAIChatCompletionClient\n", "\n", "\n", "# Function to get environment variable and ensure it is not None\n", "def get_env_variable(name: str) -> str:\n", " value = os.getenv(name)\n", " if value is None:\n", " raise ValueError(f\"Environment variable {name} is not set\")\n", " return value\n", "\n", "\n", "# Create the client with type-checked environment variables\n", "client = AzureOpenAIChatCompletionClient(\n", " azure_deployment=get_env_variable(\"AZURE_OPENAI_DEPLOYMENT_NAME\"),\n", " model=get_env_variable(\"AZURE_OPENAI_MODEL\"),\n", " api_version=get_env_variable(\"AZURE_OPENAI_API_VERSION\"),\n", " azure_endpoint=get_env_variable(\"AZURE_OPENAI_ENDPOINT\"),\n", " api_key=get_env_variable(\"AZURE_OPENAI_API_KEY\"),\n", ")" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'steps': [{'explanation': 'Start by aligning the numbers vertically.', 'output': '\\n 16\\n+ 32'}, {'explanation': 'Add the units digits: 6 + 2 = 8.', 'output': '\\n 16\\n+ 32\\n 8'}, {'explanation': 'Add the tens digits: 1 + 3 = 4.', 'output': '\\n 16\\n+ 32\\n 48'}], 'final_answer': '48'}\n" ] }, { "data": { "text/plain": [ "MathReasoning(steps=[Step(explanation='Start by aligning the numbers vertically.', output='\\n 16\\n+ 32'), Step(explanation='Add the units digits: 6 + 2 = 8.', output='\\n 16\\n+ 32\\n 8'), Step(explanation='Add the tens digits: 1 + 3 = 4.', output='\\n 16\\n+ 32\\n 48')], final_answer='48')" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Define the user message\n", "messages = [\n", " UserMessage(content=\"What is 16 + 32?\", source=\"user\"),\n", "]\n", "\n", "# Call the create method on the client, passing the messages and additional arguments\n", "# The extra_create_args dictionary includes the response format as MathReasoning model we defined above\n", "# Providing the response format and pydantic model will use the new parse method from beta SDK\n", "response = await client.create(messages=messages, extra_create_args={\"response_format\": MathReasoning})\n", "\n", "# Ensure the response content is a valid JSON string before loading it\n", "response_content: Optional[str] = response.content if isinstance(response.content, str) else None\n", "if response_content is None:\n", " raise ValueError(\"Response content is not a valid JSON string\")\n", "\n", "# Print the response content after loading it as JSON\n", "print(json.loads(response_content))\n", "\n", "# Validate the response content with the MathReasoning model\n", "MathReasoning.model_validate(json.loads(response_content))" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 2 }