Source code for autogen_agentchat.ui._console
import os
import sys
import time
from typing import AsyncGenerator, List, Optional, TypeVar, cast
from autogen_core import Image
from autogen_core.models import RequestUsage
from autogen_agentchat.base import Response, TaskResult
from autogen_agentchat.messages import AgentEvent, ChatMessage, MultiModalMessage
def _is_running_in_iterm() -> bool:
return os.getenv("TERM_PROGRAM") == "iTerm.app"
def _is_output_a_tty() -> bool:
return sys.stdout.isatty()
T = TypeVar("T", bound=TaskResult | Response)
[docs]
async def Console(
stream: AsyncGenerator[AgentEvent | ChatMessage | T, None],
*,
no_inline_images: bool = False,
) -> T:
"""
Consumes the message stream from :meth:`~autogen_agentchat.base.TaskRunner.run_stream`
or :meth:`~autogen_agentchat.base.ChatAgent.on_messages_stream` and renders the messages to the console.
Returns the last processed TaskResult or Response.
Args:
stream (AsyncGenerator[AgentEvent | ChatMessage | TaskResult, None] | AsyncGenerator[AgentEvent | ChatMessage | Response, None]): Message stream to render.
This can be from :meth:`~autogen_agentchat.base.TaskRunner.run_stream` or :meth:`~autogen_agentchat.base.ChatAgent.on_messages_stream`.
no_inline_images (bool, optional): If terminal is iTerm2 will render images inline. Use this to disable this behavior. Defaults to False.
Returns:
last_processed: A :class:`~autogen_agentchat.base.TaskResult` if the stream is from :meth:`~autogen_agentchat.base.TaskRunner.run_stream`
or a :class:`~autogen_agentchat.base.Response` if the stream is from :meth:`~autogen_agentchat.base.ChatAgent.on_messages_stream`.
"""
render_image_iterm = _is_running_in_iterm() and _is_output_a_tty() and not no_inline_images
start_time = time.time()
total_usage = RequestUsage(prompt_tokens=0, completion_tokens=0)
last_processed: Optional[T] = None
async for message in stream:
if isinstance(message, TaskResult):
duration = time.time() - start_time
output = (
f"{'-' * 10} Summary {'-' * 10}\n"
f"Number of messages: {len(message.messages)}\n"
f"Finish reason: {message.stop_reason}\n"
f"Total prompt tokens: {total_usage.prompt_tokens}\n"
f"Total completion tokens: {total_usage.completion_tokens}\n"
f"Duration: {duration:.2f} seconds\n"
)
sys.stdout.write(output)
sys.stdout.flush()
# mypy ignore
last_processed = message # type: ignore
elif isinstance(message, Response):
duration = time.time() - start_time
# Print final response.
output = f"{'-' * 10} {message.chat_message.source} {'-' * 10}\n{_message_to_str(message.chat_message, render_image_iterm=render_image_iterm)}\n"
if message.chat_message.models_usage:
output += f"[Prompt tokens: {message.chat_message.models_usage.prompt_tokens}, Completion tokens: {message.chat_message.models_usage.completion_tokens}]\n"
total_usage.completion_tokens += message.chat_message.models_usage.completion_tokens
total_usage.prompt_tokens += message.chat_message.models_usage.prompt_tokens
sys.stdout.write(output)
sys.stdout.flush()
# Print summary.
if message.inner_messages is not None:
num_inner_messages = len(message.inner_messages)
else:
num_inner_messages = 0
output = (
f"{'-' * 10} Summary {'-' * 10}\n"
f"Number of inner messages: {num_inner_messages}\n"
f"Total prompt tokens: {total_usage.prompt_tokens}\n"
f"Total completion tokens: {total_usage.completion_tokens}\n"
f"Duration: {duration:.2f} seconds\n"
)
sys.stdout.write(output)
sys.stdout.flush()
# mypy ignore
last_processed = message # type: ignore
else:
# Cast required for mypy to be happy
message = cast(AgentEvent | ChatMessage, message) # type: ignore
output = f"{'-' * 10} {message.source} {'-' * 10}\n{_message_to_str(message, render_image_iterm=render_image_iterm)}\n"
if message.models_usage:
output += f"[Prompt tokens: {message.models_usage.prompt_tokens}, Completion tokens: {message.models_usage.completion_tokens}]\n"
total_usage.completion_tokens += message.models_usage.completion_tokens
total_usage.prompt_tokens += message.models_usage.prompt_tokens
sys.stdout.write(output)
sys.stdout.flush()
if last_processed is None:
raise ValueError("No TaskResult or Response was processed.")
return last_processed
# iTerm2 image rendering protocol: https://iterm2.com/documentation-images.html
def _image_to_iterm(image: Image) -> str:
image_data = image.to_base64()
return f"\033]1337;File=inline=1:{image_data}\a\n"
def _message_to_str(message: AgentEvent | ChatMessage, *, render_image_iterm: bool = False) -> str:
if isinstance(message, MultiModalMessage):
result: List[str] = []
for c in message.content:
if isinstance(c, str):
result.append(c)
else:
if render_image_iterm:
result.append(_image_to_iterm(c))
else:
result.append("<image>")
return "\n".join(result)
else:
return f"{message.content}"