{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Using LangGraph-Backed Agent\n", "\n", "This example demonstrates how to create an AI agent using LangGraph.\n", "Based on the example in the LangGraph documentation:\n", "https://langchain-ai.github.io/langgraph/.\n", "\n", "First install the dependencies:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "vscode": { "languageId": "shellscript" } }, "outputs": [], "source": [ "# pip install langgraph langchain-openai azure-identity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's import the modules." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from dataclasses import dataclass\n", "from typing import Any, Callable, List, Literal\n", "\n", "from autogen_core import AgentId, MessageContext, RoutedAgent, SingleThreadedAgentRuntime, message_handler\n", "from azure.identity import DefaultAzureCredential, get_bearer_token_provider\n", "from langchain_core.messages import HumanMessage, SystemMessage\n", "from langchain_core.tools import tool # pyright: ignore\n", "from langchain_openai import AzureChatOpenAI, ChatOpenAI\n", "from langgraph.graph import END, MessagesState, StateGraph\n", "from langgraph.prebuilt import ToolNode" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define our message type that will be used to communicate with the agent." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "@dataclass\n", "class Message:\n", " content: str" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define the tools the agent will use." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "@tool # pyright: ignore\n", "def get_weather(location: str) -> str:\n", " \"\"\"Call to surf the web.\"\"\"\n", " # This is a placeholder, but don't tell the LLM that...\n", " if \"sf\" in location.lower() or \"san francisco\" in location.lower():\n", " return \"It's 60 degrees and foggy.\"\n", " return \"It's 90 degrees and sunny.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define the agent using LangGraph's API." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "class LangGraphToolUseAgent(RoutedAgent):\n", " def __init__(self, description: str, model: ChatOpenAI, tools: List[Callable[..., Any]]) -> None: # pyright: ignore\n", " super().__init__(description)\n", " self._model = model.bind_tools(tools) # pyright: ignore\n", "\n", " # Define the function that determines whether to continue or not\n", " def should_continue(state: MessagesState) -> Literal[\"tools\", END]: # type: ignore\n", " messages = state[\"messages\"]\n", " last_message = messages[-1]\n", " # If the LLM makes a tool call, then we route to the \"tools\" node\n", " if last_message.tool_calls: # type: ignore\n", " return \"tools\"\n", " # Otherwise, we stop (reply to the user)\n", " return END\n", "\n", " # Define the function that calls the model\n", " async def call_model(state: MessagesState): # type: ignore\n", " messages = state[\"messages\"]\n", " response = await self._model.ainvoke(messages)\n", " # We return a list, because this will get added to the existing list\n", " return {\"messages\": [response]}\n", "\n", " tool_node = ToolNode(tools) # pyright: ignore\n", "\n", " # Define a new graph\n", " self._workflow = StateGraph(MessagesState)\n", "\n", " # Define the two nodes we will cycle between\n", " self._workflow.add_node(\"agent\", call_model) # pyright: ignore\n", " self._workflow.add_node(\"tools\", tool_node) # pyright: ignore\n", "\n", " # Set the entrypoint as `agent`\n", " # This means that this node is the first one called\n", " self._workflow.set_entry_point(\"agent\")\n", "\n", " # We now add a conditional edge\n", " self._workflow.add_conditional_edges(\n", " # First, we define the start node. We use `agent`.\n", " # This means these are the edges taken after the `agent` node is called.\n", " \"agent\",\n", " # Next, we pass in the function that will determine which node is called next.\n", " should_continue, # type: ignore\n", " )\n", "\n", " # We now add a normal edge from `tools` to `agent`.\n", " # This means that after `tools` is called, `agent` node is called next.\n", " self._workflow.add_edge(\"tools\", \"agent\")\n", "\n", " # Finally, we compile it!\n", " # This compiles it into a LangChain Runnable,\n", " # meaning you can use it as you would any other runnable.\n", " # Note that we're (optionally) passing the memory when compiling the graph\n", " self._app = self._workflow.compile()\n", "\n", " @message_handler\n", " async def handle_user_message(self, message: Message, ctx: MessageContext) -> Message:\n", " # Use the Runnable\n", " final_state = await self._app.ainvoke(\n", " {\n", " \"messages\": [\n", " SystemMessage(\n", " content=\"You are a helpful AI assistant. You can use tools to help answer questions.\"\n", " ),\n", " HumanMessage(content=message.content),\n", " ]\n", " },\n", " config={\"configurable\": {\"thread_id\": 42}},\n", " )\n", " response = Message(content=final_state[\"messages\"][-1].content)\n", " return response" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's test the agent. First we need to create an agent runtime and\n", "register the agent, by providing the agent's name and a factory function\n", "that will create the agent." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "runtime = SingleThreadedAgentRuntime()\n", "await LangGraphToolUseAgent.register(\n", " runtime,\n", " \"langgraph_tool_use_agent\",\n", " lambda: LangGraphToolUseAgent(\n", " \"Tool use agent\",\n", " ChatOpenAI(\n", " model=\"gpt-4o\",\n", " # api_key=os.getenv(\"OPENAI_API_KEY\"),\n", " ),\n", " # AzureChatOpenAI(\n", " # azure_deployment=os.getenv(\"AZURE_OPENAI_DEPLOYMENT\"),\n", " # azure_endpoint=os.getenv(\"AZURE_OPENAI_ENDPOINT\"),\n", " # api_version=os.getenv(\"AZURE_OPENAI_API_VERSION\"),\n", " # # Using Azure Active Directory authentication.\n", " # azure_ad_token_provider=get_bearer_token_provider(DefaultAzureCredential()),\n", " # # Using API key.\n", " # # api_key=os.getenv(\"AZURE_OPENAI_API_KEY\"),\n", " # ),\n", " [get_weather],\n", " ),\n", ")\n", "agent = AgentId(\"langgraph_tool_use_agent\", key=\"default\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Start the agent runtime." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "runtime.start()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Send a direct message to the agent, and print the response." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current weather in San Francisco is 60 degrees and foggy.\n" ] } ], "source": [ "response = await runtime.send_message(Message(\"What's the weather in SF?\"), agent)\n", "print(response.content)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Stop the agent runtime." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "await runtime.stop()" ] } ], "metadata": { "kernelspec": { "display_name": "autogen_core", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }