from typing import Any, AsyncGenerator, List, Mapping, Sequence
from autogen_core import CancellationToken
from autogen_core.models import ChatCompletionClient, LLMMessage, SystemMessage, UserMessage
from autogen_agentchat.base import Response
from autogen_agentchat.state import SocietyOfMindAgentState
from ..base import TaskResult, Team
from ..messages import (
AgentEvent,
BaseChatMessage,
ChatMessage,
TextMessage,
)
from ._base_chat_agent import BaseChatAgent
[docs]
class SocietyOfMindAgent(BaseChatAgent):
"""An agent that uses an inner team of agents to generate responses.
Each time the agent's :meth:`on_messages` or :meth:`on_messages_stream`
method is called, it runs the inner team of agents and then uses the
model client to generate a response based on the inner team's messages.
Once the response is generated, the agent resets the inner team by
calling :meth:`Team.reset`.
Args:
name (str): The name of the agent.
team (Team): The team of agents to use.
model_client (ChatCompletionClient): The model client to use for preparing responses.
description (str, optional): The description of the agent.
instruction (str, optional): The instruction to use when generating a response using the inner team's messages.
Defaults to :attr:`DEFAULT_INSTRUCTION`. It assumes the role of 'system'.
response_prompt (str, optional): The response prompt to use when generating a response using the inner team's messages.
Defaults to :attr:`DEFAULT_RESPONSE_PROMPT`. It assumes the role of 'system'.
Example:
.. code-block:: python
import asyncio
from autogen_agentchat.ui import Console
from autogen_agentchat.agents import AssistantAgent, SocietyOfMindAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_agentchat.conditions import TextMentionTermination
async def main() -> None:
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent1 = AssistantAgent("assistant1", model_client=model_client, system_message="You are a writer, write well.")
agent2 = AssistantAgent(
"assistant2",
model_client=model_client,
system_message="You are an editor, provide critical feedback. Respond with 'APPROVE' if the text addresses all feedbacks.",
)
inner_termination = TextMentionTermination("APPROVE")
inner_team = RoundRobinGroupChat([agent1, agent2], termination_condition=inner_termination)
society_of_mind_agent = SocietyOfMindAgent("society_of_mind", team=inner_team, model_client=model_client)
agent3 = AssistantAgent(
"assistant3", model_client=model_client, system_message="Translate the text to Spanish."
)
team = RoundRobinGroupChat([society_of_mind_agent, agent3], max_turns=2)
stream = team.run_stream(task="Write a short story with a surprising ending.")
await Console(stream)
asyncio.run(main())
"""
DEFAULT_INSTRUCTION = "Earlier you were asked to fulfill a request. You and your team worked diligently to address that request. Here is a transcript of that conversation:"
"""str: The default instruction to use when generating a response using the
inner team's messages. The instruction will be prepended to the inner team's
messages when generating a response using the model. It assumes the role of
'system'."""
DEFAULT_RESPONSE_PROMPT = (
"Output a standalone response to the original request, without mentioning any of the intermediate discussion."
)
"""str: The default response prompt to use when generating a response using
the inner team's messages. It assumes the role of 'system'."""
def __init__(
self,
name: str,
team: Team,
model_client: ChatCompletionClient,
*,
description: str = "An agent that uses an inner team of agents to generate responses.",
instruction: str = DEFAULT_INSTRUCTION,
response_prompt: str = DEFAULT_RESPONSE_PROMPT,
) -> None:
super().__init__(name=name, description=description)
self._team = team
self._model_client = model_client
self._instruction = instruction
self._response_prompt = response_prompt
@property
def produced_message_types(self) -> Sequence[type[ChatMessage]]:
return (TextMessage,)
[docs]
async def on_messages(self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken) -> Response:
# Call the stream method and collect the messages.
response: Response | None = None
async for msg in self.on_messages_stream(messages, cancellation_token):
if isinstance(msg, Response):
response = msg
assert response is not None
return response
[docs]
async def on_messages_stream(
self, messages: Sequence[ChatMessage], cancellation_token: CancellationToken
) -> AsyncGenerator[AgentEvent | ChatMessage | Response, None]:
# Prepare the task for the team of agents.
task = list(messages)
# Run the team of agents.
result: TaskResult | None = None
inner_messages: List[AgentEvent | ChatMessage] = []
count = 0
async for inner_msg in self._team.run_stream(task=task, cancellation_token=cancellation_token):
if isinstance(inner_msg, TaskResult):
result = inner_msg
else:
count += 1
if count <= len(task):
# Skip the task messages.
continue
yield inner_msg
inner_messages.append(inner_msg)
assert result is not None
if len(inner_messages) == 0:
yield Response(
chat_message=TextMessage(source=self.name, content="No response."), inner_messages=inner_messages
)
else:
# Generate a response using the model client.
llm_messages: List[LLMMessage] = [SystemMessage(content=self._instruction)]
llm_messages.extend(
[
UserMessage(content=message.content, source=message.source)
for message in inner_messages
if isinstance(message, BaseChatMessage)
]
)
llm_messages.append(SystemMessage(content=self._response_prompt))
completion = await self._model_client.create(messages=llm_messages, cancellation_token=cancellation_token)
assert isinstance(completion.content, str)
yield Response(
chat_message=TextMessage(source=self.name, content=completion.content, models_usage=completion.usage),
inner_messages=inner_messages,
)
# Reset the team.
await self._team.reset()
[docs]
async def on_reset(self, cancellation_token: CancellationToken) -> None:
await self._team.reset()
[docs]
async def save_state(self) -> Mapping[str, Any]:
team_state = await self._team.save_state()
state = SocietyOfMindAgentState(inner_team_state=team_state)
return state.model_dump()
[docs]
async def load_state(self, state: Mapping[str, Any]) -> None:
society_of_mind_state = SocietyOfMindAgentState.model_validate(state)
await self._team.load_state(society_of_mind_state.inner_team_state)