Source code for autogen_ext.models.openai._openai_client

import asyncio
import inspect
import json
import logging
import math
import re
import warnings
from asyncio import Task
from typing import (
    Any,
    AsyncGenerator,
    Dict,
    List,
    Mapping,
    Optional,
    Sequence,
    Set,
    Type,
    Union,
    cast,
)

import tiktoken
from autogen_core import (
    EVENT_LOGGER_NAME,
    TRACE_LOGGER_NAME,
    CancellationToken,
    Component,
    FunctionCall,
    Image,
)
from autogen_core.logging import LLMCallEvent
from autogen_core.models import (
    AssistantMessage,
    ChatCompletionClient,
    ChatCompletionTokenLogprob,
    CreateResult,
    FunctionExecutionResultMessage,
    LLMMessage,
    ModelCapabilities,  # type: ignore
    ModelFamily,
    ModelInfo,
    RequestUsage,
    SystemMessage,
    TopLogprob,
    UserMessage,
)
from autogen_core.tools import Tool, ToolSchema
from openai import AsyncAzureOpenAI, AsyncOpenAI
from openai.types.chat import (
    ChatCompletion,
    ChatCompletionAssistantMessageParam,
    ChatCompletionContentPartParam,
    ChatCompletionContentPartTextParam,
    ChatCompletionMessageParam,
    ChatCompletionMessageToolCallParam,
    ChatCompletionRole,
    ChatCompletionSystemMessageParam,
    ChatCompletionToolMessageParam,
    ChatCompletionToolParam,
    ChatCompletionUserMessageParam,
    ParsedChatCompletion,
    ParsedChoice,
    completion_create_params,
)
from openai.types.chat.chat_completion import Choice
from openai.types.chat.chat_completion_chunk import Choice as ChunkChoice
from openai.types.shared_params import FunctionDefinition, FunctionParameters
from pydantic import BaseModel
from typing_extensions import Self, Unpack

from autogen_ext.models.openai._azure_token_provider import AzureTokenProvider

from . import _model_info
from .config import (
    AzureOpenAIClientConfiguration,
    AzureOpenAIClientConfigurationConfigModel,
    OpenAIClientConfiguration,
    OpenAIClientConfigurationConfigModel,
)

logger = logging.getLogger(EVENT_LOGGER_NAME)
trace_logger = logging.getLogger(TRACE_LOGGER_NAME)

openai_init_kwargs = set(inspect.getfullargspec(AsyncOpenAI.__init__).kwonlyargs)
aopenai_init_kwargs = set(inspect.getfullargspec(AsyncAzureOpenAI.__init__).kwonlyargs)

create_kwargs = set(completion_create_params.CompletionCreateParamsBase.__annotations__.keys()) | set(
    ("timeout", "stream")
)
# Only single choice allowed
disallowed_create_args = set(["stream", "messages", "function_call", "functions", "n"])
required_create_args: Set[str] = set(["model"])


def _azure_openai_client_from_config(config: Mapping[str, Any]) -> AsyncAzureOpenAI:
    # Take a copy
    copied_config = dict(config).copy()
    # Shave down the config to just the AzureOpenAIChatCompletionClient kwargs
    azure_config = {k: v for k, v in copied_config.items() if k in aopenai_init_kwargs}
    return AsyncAzureOpenAI(**azure_config)


def _openai_client_from_config(config: Mapping[str, Any]) -> AsyncOpenAI:
    # Shave down the config to just the OpenAI kwargs
    openai_config = {k: v for k, v in config.items() if k in openai_init_kwargs}
    return AsyncOpenAI(**openai_config)


def _create_args_from_config(config: Mapping[str, Any]) -> Dict[str, Any]:
    create_args = {k: v for k, v in config.items() if k in create_kwargs}
    create_args_keys = set(create_args.keys())
    if not required_create_args.issubset(create_args_keys):
        raise ValueError(f"Required create args are missing: {required_create_args - create_args_keys}")
    if disallowed_create_args.intersection(create_args_keys):
        raise ValueError(f"Disallowed create args are present: {disallowed_create_args.intersection(create_args_keys)}")
    return create_args


# TODO check types
# oai_system_message_schema = type2schema(ChatCompletionSystemMessageParam)
# oai_user_message_schema = type2schema(ChatCompletionUserMessageParam)
# oai_assistant_message_schema = type2schema(ChatCompletionAssistantMessageParam)
# oai_tool_message_schema = type2schema(ChatCompletionToolMessageParam)


def type_to_role(message: LLMMessage) -> ChatCompletionRole:
    if isinstance(message, SystemMessage):
        return "system"
    elif isinstance(message, UserMessage):
        return "user"
    elif isinstance(message, AssistantMessage):
        return "assistant"
    else:
        return "tool"


def user_message_to_oai(message: UserMessage) -> ChatCompletionUserMessageParam:
    assert_valid_name(message.source)
    if isinstance(message.content, str):
        return ChatCompletionUserMessageParam(
            content=message.content,
            role="user",
            name=message.source,
        )
    else:
        parts: List[ChatCompletionContentPartParam] = []
        for part in message.content:
            if isinstance(part, str):
                oai_part = ChatCompletionContentPartTextParam(
                    text=part,
                    type="text",
                )
                parts.append(oai_part)
            elif isinstance(part, Image):
                # TODO: support url based images
                # TODO: support specifying details
                parts.append(part.to_openai_format())
            else:
                raise ValueError(f"Unknown content type: {part}")
        return ChatCompletionUserMessageParam(
            content=parts,
            role="user",
            name=message.source,
        )


def system_message_to_oai(message: SystemMessage) -> ChatCompletionSystemMessageParam:
    return ChatCompletionSystemMessageParam(
        content=message.content,
        role="system",
    )


def func_call_to_oai(message: FunctionCall) -> ChatCompletionMessageToolCallParam:
    return ChatCompletionMessageToolCallParam(
        id=message.id,
        function={
            "arguments": message.arguments,
            "name": message.name,
        },
        type="function",
    )


def tool_message_to_oai(
    message: FunctionExecutionResultMessage,
) -> Sequence[ChatCompletionToolMessageParam]:
    return [
        ChatCompletionToolMessageParam(content=x.content, role="tool", tool_call_id=x.call_id) for x in message.content
    ]


def assistant_message_to_oai(
    message: AssistantMessage,
) -> ChatCompletionAssistantMessageParam:
    assert_valid_name(message.source)
    if isinstance(message.content, list):
        return ChatCompletionAssistantMessageParam(
            tool_calls=[func_call_to_oai(x) for x in message.content],
            role="assistant",
            name=message.source,
        )
    else:
        return ChatCompletionAssistantMessageParam(
            content=message.content,
            role="assistant",
            name=message.source,
        )


def to_oai_type(message: LLMMessage) -> Sequence[ChatCompletionMessageParam]:
    if isinstance(message, SystemMessage):
        return [system_message_to_oai(message)]
    elif isinstance(message, UserMessage):
        return [user_message_to_oai(message)]
    elif isinstance(message, AssistantMessage):
        return [assistant_message_to_oai(message)]
    else:
        return tool_message_to_oai(message)


def calculate_vision_tokens(image: Image, detail: str = "auto") -> int:
    MAX_LONG_EDGE = 2048
    BASE_TOKEN_COUNT = 85
    TOKENS_PER_TILE = 170
    MAX_SHORT_EDGE = 768
    TILE_SIZE = 512

    if detail == "low":
        return BASE_TOKEN_COUNT

    width, height = image.image.size

    # Scale down to fit within a MAX_LONG_EDGE x MAX_LONG_EDGE square if necessary

    if width > MAX_LONG_EDGE or height > MAX_LONG_EDGE:
        aspect_ratio = width / height
        if aspect_ratio > 1:
            # Width is greater than height
            width = MAX_LONG_EDGE
            height = int(MAX_LONG_EDGE / aspect_ratio)
        else:
            # Height is greater than or equal to width
            height = MAX_LONG_EDGE
            width = int(MAX_LONG_EDGE * aspect_ratio)

    # Resize such that the shortest side is MAX_SHORT_EDGE if both dimensions exceed MAX_SHORT_EDGE
    aspect_ratio = width / height
    if width > MAX_SHORT_EDGE and height > MAX_SHORT_EDGE:
        if aspect_ratio > 1:
            # Width is greater than height
            height = MAX_SHORT_EDGE
            width = int(MAX_SHORT_EDGE * aspect_ratio)
        else:
            # Height is greater than or equal to width
            width = MAX_SHORT_EDGE
            height = int(MAX_SHORT_EDGE / aspect_ratio)

    # Calculate the number of tiles based on TILE_SIZE

    tiles_width = math.ceil(width / TILE_SIZE)
    tiles_height = math.ceil(height / TILE_SIZE)
    total_tiles = tiles_width * tiles_height
    # Calculate the total tokens based on the number of tiles and the base token count

    total_tokens = BASE_TOKEN_COUNT + TOKENS_PER_TILE * total_tiles

    return total_tokens


def _add_usage(usage1: RequestUsage, usage2: RequestUsage) -> RequestUsage:
    return RequestUsage(
        prompt_tokens=usage1.prompt_tokens + usage2.prompt_tokens,
        completion_tokens=usage1.completion_tokens + usage2.completion_tokens,
    )


def convert_tools(
    tools: Sequence[Tool | ToolSchema],
) -> List[ChatCompletionToolParam]:
    result: List[ChatCompletionToolParam] = []
    for tool in tools:
        if isinstance(tool, Tool):
            tool_schema = tool.schema
        else:
            assert isinstance(tool, dict)
            tool_schema = tool

        result.append(
            ChatCompletionToolParam(
                type="function",
                function=FunctionDefinition(
                    name=tool_schema["name"],
                    description=(tool_schema["description"] if "description" in tool_schema else ""),
                    parameters=(
                        cast(FunctionParameters, tool_schema["parameters"]) if "parameters" in tool_schema else {}
                    ),
                ),
            )
        )
    # Check if all tools have valid names.
    for tool_param in result:
        assert_valid_name(tool_param["function"]["name"])
    return result


def normalize_name(name: str) -> str:
    """
    LLMs sometimes ask functions while ignoring their own format requirements, this function should be used to replace invalid characters with "_".

    Prefer _assert_valid_name for validating user configuration or input
    """
    return re.sub(r"[^a-zA-Z0-9_-]", "_", name)[:64]


def assert_valid_name(name: str) -> str:
    """
    Ensure that configured names are valid, raises ValueError if not.

    For munging LLM responses use _normalize_name to ensure LLM specified names don't break the API.
    """
    if not re.match(r"^[a-zA-Z0-9_-]+$", name):
        raise ValueError(f"Invalid name: {name}. Only letters, numbers, '_' and '-' are allowed.")
    if len(name) > 64:
        raise ValueError(f"Invalid name: {name}. Name must be less than 64 characters.")
    return name


class BaseOpenAIChatCompletionClient(ChatCompletionClient):
    def __init__(
        self,
        client: Union[AsyncOpenAI, AsyncAzureOpenAI],
        *,
        create_args: Dict[str, Any],
        model_capabilities: Optional[ModelCapabilities] = None,  # type: ignore
        model_info: Optional[ModelInfo] = None,
    ):
        self._client = client
        if model_capabilities is None and model_info is None:
            try:
                self._model_info = _model_info.get_info(create_args["model"])
            except KeyError as err:
                raise ValueError("model_info is required when model name is not a valid OpenAI model") from err
        elif model_capabilities is not None and model_info is not None:
            raise ValueError("model_capabilities and model_info are mutually exclusive")
        elif model_capabilities is not None and model_info is None:
            warnings.warn("model_capabilities is deprecated, use model_info instead", DeprecationWarning, stacklevel=2)
            info = cast(ModelInfo, model_capabilities)
            info["family"] = ModelFamily.UNKNOWN
            self._model_info = info
        elif model_capabilities is None and model_info is not None:
            self._model_info = model_info

        self._resolved_model: Optional[str] = None
        if "model" in create_args:
            self._resolved_model = _model_info.resolve_model(create_args["model"])

        if (
            "response_format" in create_args
            and create_args["response_format"]["type"] == "json_object"
            and not self._model_info["json_output"]
        ):
            raise ValueError("Model does not support JSON output")

        self._create_args = create_args
        self._total_usage = RequestUsage(prompt_tokens=0, completion_tokens=0)
        self._actual_usage = RequestUsage(prompt_tokens=0, completion_tokens=0)

    @classmethod
    def create_from_config(cls, config: Dict[str, Any]) -> ChatCompletionClient:
        return OpenAIChatCompletionClient(**config)

    async def create(
        self,
        messages: Sequence[LLMMessage],
        *,
        tools: Sequence[Tool | ToolSchema] = [],
        json_output: Optional[bool] = None,
        extra_create_args: Mapping[str, Any] = {},
        cancellation_token: Optional[CancellationToken] = None,
    ) -> CreateResult:
        # Make sure all extra_create_args are valid
        extra_create_args_keys = set(extra_create_args.keys())
        if not create_kwargs.issuperset(extra_create_args_keys):
            raise ValueError(f"Extra create args are invalid: {extra_create_args_keys - create_kwargs}")

        # Copy the create args and overwrite anything in extra_create_args
        create_args = self._create_args.copy()
        create_args.update(extra_create_args)

        # Declare use_beta_client
        use_beta_client: bool = False
        response_format_value: Optional[Type[BaseModel]] = None

        if "response_format" in create_args:
            value = create_args["response_format"]
            # If value is a Pydantic model class, use the beta client
            if isinstance(value, type) and issubclass(value, BaseModel):
                response_format_value = value
                use_beta_client = True
            else:
                # response_format_value is not a Pydantic model class
                use_beta_client = False
                response_format_value = None

        # Remove 'response_format' from create_args to prevent passing it twice
        create_args_no_response_format = {k: v for k, v in create_args.items() if k != "response_format"}

        # TODO: allow custom handling.
        # For now we raise an error if images are present and vision is not supported
        if self.capabilities["vision"] is False:
            for message in messages:
                if isinstance(message, UserMessage):
                    if isinstance(message.content, list) and any(isinstance(x, Image) for x in message.content):
                        raise ValueError("Model does not support vision and image was provided")

        if json_output is not None:
            if self.capabilities["json_output"] is False and json_output is True:
                raise ValueError("Model does not support JSON output")

            if json_output is True:
                create_args["response_format"] = {"type": "json_object"}
            else:
                create_args["response_format"] = {"type": "text"}

        if self.capabilities["json_output"] is False and json_output is True:
            raise ValueError("Model does not support JSON output")

        oai_messages_nested = [to_oai_type(m) for m in messages]
        oai_messages = [item for sublist in oai_messages_nested for item in sublist]

        if self.capabilities["function_calling"] is False and len(tools) > 0:
            raise ValueError("Model does not support function calling")
        future: Union[Task[ParsedChatCompletion[BaseModel]], Task[ChatCompletion]]
        if len(tools) > 0:
            converted_tools = convert_tools(tools)
            if use_beta_client:
                # Pass response_format_value if it's not None
                if response_format_value is not None:
                    future = asyncio.ensure_future(
                        self._client.beta.chat.completions.parse(
                            messages=oai_messages,
                            tools=converted_tools,
                            response_format=response_format_value,
                            **create_args_no_response_format,
                        )
                    )
                else:
                    future = asyncio.ensure_future(
                        self._client.beta.chat.completions.parse(
                            messages=oai_messages,
                            tools=converted_tools,
                            **create_args_no_response_format,
                        )
                    )
            else:
                future = asyncio.ensure_future(
                    self._client.chat.completions.create(
                        messages=oai_messages,
                        stream=False,
                        tools=converted_tools,
                        **create_args,
                    )
                )
        else:
            if use_beta_client:
                if response_format_value is not None:
                    future = asyncio.ensure_future(
                        self._client.beta.chat.completions.parse(
                            messages=oai_messages,
                            response_format=response_format_value,
                            **create_args_no_response_format,
                        )
                    )
                else:
                    future = asyncio.ensure_future(
                        self._client.beta.chat.completions.parse(
                            messages=oai_messages,
                            **create_args_no_response_format,
                        )
                    )
            else:
                future = asyncio.ensure_future(
                    self._client.chat.completions.create(
                        messages=oai_messages,
                        stream=False,
                        **create_args,
                    )
                )

        if cancellation_token is not None:
            cancellation_token.link_future(future)
        result: Union[ParsedChatCompletion[BaseModel], ChatCompletion] = await future
        if use_beta_client:
            result = cast(ParsedChatCompletion[Any], result)

        if result.usage is not None:
            logger.info(
                LLMCallEvent(
                    prompt_tokens=result.usage.prompt_tokens,
                    completion_tokens=result.usage.completion_tokens,
                )
            )

        usage = RequestUsage(
            # TODO backup token counting
            prompt_tokens=result.usage.prompt_tokens if result.usage is not None else 0,
            completion_tokens=(result.usage.completion_tokens if result.usage is not None else 0),
        )

        if self._resolved_model is not None:
            if self._resolved_model != result.model:
                warnings.warn(
                    f"Resolved model mismatch: {self._resolved_model} != {result.model}. Model mapping may be incorrect.",
                    stacklevel=2,
                )

        # Limited to a single choice currently.
        choice: Union[ParsedChoice[Any], ParsedChoice[BaseModel], Choice] = result.choices[0]
        if choice.finish_reason == "function_call":
            raise ValueError("Function calls are not supported in this context")

        content: Union[str, List[FunctionCall]]
        if choice.finish_reason == "tool_calls":
            assert choice.message.tool_calls is not None
            assert choice.message.function_call is None

            # NOTE: If OAI response type changes, this will need to be updated
            content = [
                FunctionCall(
                    id=x.id,
                    arguments=x.function.arguments,
                    name=normalize_name(x.function.name),
                )
                for x in choice.message.tool_calls
            ]
            finish_reason = "function_calls"
        else:
            finish_reason = choice.finish_reason
            content = choice.message.content or ""
        logprobs: Optional[List[ChatCompletionTokenLogprob]] = None
        if choice.logprobs and choice.logprobs.content:
            logprobs = [
                ChatCompletionTokenLogprob(
                    token=x.token,
                    logprob=x.logprob,
                    top_logprobs=[TopLogprob(logprob=y.logprob, bytes=y.bytes) for y in x.top_logprobs],
                    bytes=x.bytes,
                )
                for x in choice.logprobs.content
            ]
        response = CreateResult(
            finish_reason=finish_reason,  # type: ignore
            content=content,
            usage=usage,
            cached=False,
            logprobs=logprobs,
        )

        self._total_usage = _add_usage(self._total_usage, usage)
        self._actual_usage = _add_usage(self._actual_usage, usage)

        # TODO - why is this cast needed?
        return response

    async def create_stream(
        self,
        messages: Sequence[LLMMessage],
        *,
        tools: Sequence[Tool | ToolSchema] = [],
        json_output: Optional[bool] = None,
        extra_create_args: Mapping[str, Any] = {},
        cancellation_token: Optional[CancellationToken] = None,
        max_consecutive_empty_chunk_tolerance: int = 0,
    ) -> AsyncGenerator[Union[str, CreateResult], None]:
        """
        Creates an AsyncGenerator that will yield a  stream of chat completions based on the provided messages and tools.

        Args:
            messages (Sequence[LLMMessage]): A sequence of messages to be processed.
            tools (Sequence[Tool | ToolSchema], optional): A sequence of tools to be used in the completion. Defaults to `[]`.
            json_output (Optional[bool], optional): If True, the output will be in JSON format. Defaults to None.
            extra_create_args (Mapping[str, Any], optional): Additional arguments for the creation process. Default to `{}`.
            cancellation_token (Optional[CancellationToken], optional): A token to cancel the operation. Defaults to None.
            max_consecutive_empty_chunk_tolerance (int): The maximum number of consecutive empty chunks to tolerate before raising a ValueError. This seems to only be needed to set when using `AzureOpenAIChatCompletionClient`. Defaults to 0.

        Yields:
            AsyncGenerator[Union[str, CreateResult], None]: A generator yielding the completion results as they are produced.

        In streaming, the default behaviour is not return token usage counts. See: [OpenAI API reference for possible args](https://platform.openai.com/docs/api-reference/chat/create).
        However `extra_create_args={"stream_options": {"include_usage": True}}` will (if supported by the accessed API)
        return a final chunk with usage set to a RequestUsage object having prompt and completion token counts,
        all preceding chunks will have usage as None. See: [stream_options](https://platform.openai.com/docs/api-reference/chat/create#chat-create-stream_options).

        Other examples of OPENAI supported arguments that can be included in `extra_create_args`:
            - `temperature` (float): Controls the randomness of the output. Higher values (e.g., 0.8) make the output more random, while lower values (e.g., 0.2) make it more focused and deterministic.
            - `max_tokens` (int): The maximum number of tokens to generate in the completion.
            - `top_p` (float): An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.
            - `frequency_penalty` (float): A value between -2.0 and 2.0 that penalizes new tokens based on their existing frequency in the text so far, decreasing the likelihood of repeated phrases.
            - `presence_penalty` (float): A value between -2.0 and 2.0 that penalizes new tokens based on whether they appear in the text so far, encouraging the model to talk about new topics.
        """
        # Make sure all extra_create_args are valid
        extra_create_args_keys = set(extra_create_args.keys())
        if not create_kwargs.issuperset(extra_create_args_keys):
            raise ValueError(f"Extra create args are invalid: {extra_create_args_keys - create_kwargs}")

        # Copy the create args and overwrite anything in extra_create_args
        create_args = self._create_args.copy()
        create_args.update(extra_create_args)

        oai_messages_nested = [to_oai_type(m) for m in messages]
        oai_messages = [item for sublist in oai_messages_nested for item in sublist]

        # TODO: allow custom handling.
        # For now we raise an error if images are present and vision is not supported
        if self.capabilities["vision"] is False:
            for message in messages:
                if isinstance(message, UserMessage):
                    if isinstance(message.content, list) and any(isinstance(x, Image) for x in message.content):
                        raise ValueError("Model does not support vision and image was provided")

        if json_output is not None:
            if self.capabilities["json_output"] is False and json_output is True:
                raise ValueError("Model does not support JSON output")

            if json_output is True:
                create_args["response_format"] = {"type": "json_object"}
            else:
                create_args["response_format"] = {"type": "text"}

        if len(tools) > 0:
            converted_tools = convert_tools(tools)
            stream_future = asyncio.ensure_future(
                self._client.chat.completions.create(
                    messages=oai_messages,
                    stream=True,
                    tools=converted_tools,
                    **create_args,
                )
            )
        else:
            stream_future = asyncio.ensure_future(
                self._client.chat.completions.create(messages=oai_messages, stream=True, **create_args)
            )
        if cancellation_token is not None:
            cancellation_token.link_future(stream_future)
        stream = await stream_future
        choice: Union[ParsedChoice[Any], ParsedChoice[BaseModel], ChunkChoice] = cast(ChunkChoice, None)
        chunk = None
        stop_reason = None
        maybe_model = None
        content_deltas: List[str] = []
        full_tool_calls: Dict[int, FunctionCall] = {}
        completion_tokens = 0
        logprobs: Optional[List[ChatCompletionTokenLogprob]] = None
        empty_chunk_count = 0

        while True:
            try:
                chunk_future = asyncio.ensure_future(anext(stream))
                if cancellation_token is not None:
                    cancellation_token.link_future(chunk_future)
                chunk = await chunk_future

                # This is to address a bug in AzureOpenAIChatCompletionClient. OpenAIChatCompletionClient works fine.
                #  https://github.com/microsoft/autogen/issues/4213
                if len(chunk.choices) == 0:
                    empty_chunk_count += 1
                    if max_consecutive_empty_chunk_tolerance == 0:
                        raise ValueError(
                            "Consecutive empty chunks found. Change max_empty_consecutive_chunk_tolerance to increase empty chunk tolerance"
                        )
                    elif empty_chunk_count >= max_consecutive_empty_chunk_tolerance:
                        raise ValueError("Exceeded the threshold of receiving consecutive empty chunks")
                    continue
                else:
                    empty_chunk_count = 0

                # to process usage chunk in streaming situations
                # add    stream_options={"include_usage": True} in the initialization of OpenAIChatCompletionClient(...)
                # However the different api's
                # OPENAI api usage chunk produces no choices so need to check if there is a choice
                # liteLLM api usage chunk does produce choices
                choice = (
                    chunk.choices[0]
                    if len(chunk.choices) > 0
                    else choice
                    if chunk.usage is not None and stop_reason is not None
                    else cast(ChunkChoice, None)
                )

                # for liteLLM chunk usage, do the following hack keeping the pervious chunk.stop_reason (if set).
                # set the stop_reason for the usage chunk to the prior stop_reason
                stop_reason = choice.finish_reason if chunk.usage is None and stop_reason is None else stop_reason
                maybe_model = chunk.model
                # First try get content
                if choice.delta.content is not None:
                    content_deltas.append(choice.delta.content)
                    if len(choice.delta.content) > 0:
                        yield choice.delta.content
                    continue

                # Otherwise, get tool calls
                if choice.delta.tool_calls is not None:
                    for tool_call_chunk in choice.delta.tool_calls:
                        idx = tool_call_chunk.index
                        if idx not in full_tool_calls:
                            # We ignore the type hint here because we want to fill in type when the delta provides it
                            full_tool_calls[idx] = FunctionCall(id="", arguments="", name="")

                        if tool_call_chunk.id is not None:
                            full_tool_calls[idx].id += tool_call_chunk.id

                        if tool_call_chunk.function is not None:
                            if tool_call_chunk.function.name is not None:
                                full_tool_calls[idx].name += tool_call_chunk.function.name
                            if tool_call_chunk.function.arguments is not None:
                                full_tool_calls[idx].arguments += tool_call_chunk.function.arguments
                if choice.logprobs and choice.logprobs.content:
                    logprobs = [
                        ChatCompletionTokenLogprob(
                            token=x.token,
                            logprob=x.logprob,
                            top_logprobs=[TopLogprob(logprob=y.logprob, bytes=y.bytes) for y in x.top_logprobs],
                            bytes=x.bytes,
                        )
                        for x in choice.logprobs.content
                    ]

            except StopAsyncIteration:
                break

        model = maybe_model or create_args["model"]
        model = model.replace("gpt-35", "gpt-3.5")  # hack for Azure API

        if chunk and chunk.usage:
            prompt_tokens = chunk.usage.prompt_tokens
        else:
            prompt_tokens = 0

        if stop_reason is None:
            raise ValueError("No stop reason found")

        content: Union[str, List[FunctionCall]]
        if len(content_deltas) > 1:
            content = "".join(content_deltas)
            if chunk and chunk.usage:
                completion_tokens = chunk.usage.completion_tokens
            else:
                completion_tokens = 0
        else:
            completion_tokens = 0
            # TODO: fix assumption that dict values were added in order and actually order by int index
            # for tool_call in full_tool_calls.values():
            #     # value = json.dumps(tool_call)
            #     # completion_tokens += count_token(value, model=model)
            #     completion_tokens += 0
            content = list(full_tool_calls.values())

        usage = RequestUsage(
            prompt_tokens=prompt_tokens,
            completion_tokens=completion_tokens,
        )
        if stop_reason == "function_call":
            raise ValueError("Function calls are not supported in this context")
        if stop_reason == "tool_calls":
            stop_reason = "function_calls"

        result = CreateResult(
            finish_reason=stop_reason,  # type: ignore
            content=content,
            usage=usage,
            cached=False,
            logprobs=logprobs,
        )

        self._total_usage = _add_usage(self._total_usage, usage)
        self._actual_usage = _add_usage(self._actual_usage, usage)

        yield result

    def actual_usage(self) -> RequestUsage:
        return self._actual_usage

    def total_usage(self) -> RequestUsage:
        return self._total_usage

    def count_tokens(self, messages: Sequence[LLMMessage], *, tools: Sequence[Tool | ToolSchema] = []) -> int:
        model = self._create_args["model"]
        try:
            encoding = tiktoken.encoding_for_model(model)
        except KeyError:
            trace_logger.warning(f"Model {model} not found. Using cl100k_base encoding.")
            encoding = tiktoken.get_encoding("cl100k_base")
        tokens_per_message = 3
        tokens_per_name = 1
        num_tokens = 0

        # Message tokens.
        for message in messages:
            num_tokens += tokens_per_message
            oai_message = to_oai_type(message)
            for oai_message_part in oai_message:
                for key, value in oai_message_part.items():
                    if value is None:
                        continue

                    if isinstance(message, UserMessage) and isinstance(value, list):
                        typed_message_value = cast(List[ChatCompletionContentPartParam], value)

                        assert len(typed_message_value) == len(
                            message.content
                        ), "Mismatch in message content and typed message value"

                        # We need image properties that are only in the original message
                        for part, content_part in zip(typed_message_value, message.content, strict=False):
                            if isinstance(content_part, Image):
                                # TODO: add detail parameter
                                num_tokens += calculate_vision_tokens(content_part)
                            elif isinstance(part, str):
                                num_tokens += len(encoding.encode(part))
                            else:
                                try:
                                    serialized_part = json.dumps(part)
                                    num_tokens += len(encoding.encode(serialized_part))
                                except TypeError:
                                    trace_logger.warning(f"Could not convert {part} to string, skipping.")
                    else:
                        if not isinstance(value, str):
                            try:
                                value = json.dumps(value)
                            except TypeError:
                                trace_logger.warning(f"Could not convert {value} to string, skipping.")
                                continue
                        num_tokens += len(encoding.encode(value))
                        if key == "name":
                            num_tokens += tokens_per_name
        num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>

        # Tool tokens.
        oai_tools = convert_tools(tools)
        for tool in oai_tools:
            function = tool["function"]
            tool_tokens = len(encoding.encode(function["name"]))
            if "description" in function:
                tool_tokens += len(encoding.encode(function["description"]))
            tool_tokens -= 2
            if "parameters" in function:
                parameters = function["parameters"]
                if "properties" in parameters:
                    assert isinstance(parameters["properties"], dict)
                    for propertiesKey in parameters["properties"]:  # pyright: ignore
                        assert isinstance(propertiesKey, str)
                        tool_tokens += len(encoding.encode(propertiesKey))
                        v = parameters["properties"][propertiesKey]  # pyright: ignore
                        for field in v:  # pyright: ignore
                            if field == "type":
                                tool_tokens += 2
                                tool_tokens += len(encoding.encode(v["type"]))  # pyright: ignore
                            elif field == "description":
                                tool_tokens += 2
                                tool_tokens += len(encoding.encode(v["description"]))  # pyright: ignore
                            elif field == "enum":
                                tool_tokens -= 3
                                for o in v["enum"]:  # pyright: ignore
                                    tool_tokens += 3
                                    tool_tokens += len(encoding.encode(o))  # pyright: ignore
                            else:
                                trace_logger.warning(f"Not supported field {field}")
                    tool_tokens += 11
                    if len(parameters["properties"]) == 0:  # pyright: ignore
                        tool_tokens -= 2
            num_tokens += tool_tokens
        num_tokens += 12
        return num_tokens

    def remaining_tokens(self, messages: Sequence[LLMMessage], *, tools: Sequence[Tool | ToolSchema] = []) -> int:
        token_limit = _model_info.get_token_limit(self._create_args["model"])
        return token_limit - self.count_tokens(messages, tools=tools)

    @property
    def capabilities(self) -> ModelCapabilities:  # type: ignore
        warnings.warn("capabilities is deprecated, use model_info instead", DeprecationWarning, stacklevel=2)
        return self._model_info

    @property
    def model_info(self) -> ModelInfo:
        return self._model_info


[docs] class OpenAIChatCompletionClient(BaseOpenAIChatCompletionClient, Component[OpenAIClientConfigurationConfigModel]): """Chat completion client for OpenAI hosted models. You can also use this client for OpenAI-compatible ChatCompletion endpoints. **Using this client for non-OpenAI models is not tested or guaranteed.** For non-OpenAI models, please first take a look at our `community extensions <https://microsoft.github.io/autogen/dev/user-guide/extensions-user-guide/index.html>`_ for additional model clients. Args: model (str): The model to use. **Required.** api_key (str): The API key to use. **Required if 'OPENAI_API_KEY' is not found in the environment variables.** timeout (optional, int): The timeout for the request in seconds. max_retries (optional, int): The maximum number of retries to attempt. organization_id (optional, str): The organization ID to use. base_url (optional, str): The base URL to use. **Required if the model is not hosted on OpenAI.** model_capabilities (optional, ModelCapabilities): The capabilities of the model. **Required if the model name is not a valid OpenAI model.** To use this client, you must install the `openai` extension: .. code-block:: bash pip install "autogen-ext[openai]==0.4.0.dev13" The following code snippet shows how to use the client with an OpenAI model: .. code-block:: python from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_core.models import UserMessage openai_client = OpenAIChatCompletionClient( model="gpt-4o-2024-08-06", # api_key="sk-...", # Optional if you have an OPENAI_API_KEY environment variable set. ) result = await openai_client.create([UserMessage(content="What is the capital of France?", source="user")]) # type: ignore print(result) To use the client with a non-OpenAI model, you need to provide the base URL of the model and the model capabilities: .. code-block:: python from autogen_ext.models.openai import OpenAIChatCompletionClient custom_model_client = OpenAIChatCompletionClient( model="custom-model-name", base_url="https://custom-model.com/reset/of/the/path", api_key="placeholder", model_capabilities={ "vision": True, "function_calling": True, "json_output": True, }, ) """ component_type = "model" component_config_schema = OpenAIClientConfigurationConfigModel component_provider_override = "autogen_ext.models.openai.OpenAIChatCompletionClient" def __init__(self, **kwargs: Unpack[OpenAIClientConfiguration]): if "model" not in kwargs: raise ValueError("model is required for OpenAIChatCompletionClient") model_capabilities: Optional[ModelCapabilities] = None # type: ignore copied_args = dict(kwargs).copy() if "model_capabilities" in kwargs: model_capabilities = kwargs["model_capabilities"] del copied_args["model_capabilities"] model_info: Optional[ModelInfo] = None if "model_info" in kwargs: model_info = kwargs["model_info"] del copied_args["model_info"] client = _openai_client_from_config(copied_args) create_args = _create_args_from_config(copied_args) self._raw_config: Dict[str, Any] = copied_args super().__init__( client=client, create_args=create_args, model_capabilities=model_capabilities, model_info=model_info ) def __getstate__(self) -> Dict[str, Any]: state = self.__dict__.copy() state["_client"] = None return state def __setstate__(self, state: Dict[str, Any]) -> None: self.__dict__.update(state) self._client = _openai_client_from_config(state["_raw_config"])
[docs] def _to_config(self) -> OpenAIClientConfigurationConfigModel: copied_config = self._raw_config.copy() return OpenAIClientConfigurationConfigModel(**copied_config)
[docs] @classmethod def _from_config(cls, config: OpenAIClientConfigurationConfigModel) -> Self: copied_config = config.model_copy().model_dump(exclude_none=True) return cls(**copied_config)
[docs] class AzureOpenAIChatCompletionClient( BaseOpenAIChatCompletionClient, Component[AzureOpenAIClientConfigurationConfigModel] ): """Chat completion client for Azure OpenAI hosted models. Args: azure_endpoint (str): The endpoint for the Azure model. **Required for Azure models.** model (str): The deployment ID for the Azure model. **Required for Azure models.** api_version (str): The API version to use. **Required for Azure models.** azure_ad_token (str): The Azure AD token to use. Provide this or `azure_ad_token_provider` for token-based authentication. azure_ad_token_provider (Callable[[], Awaitable[str]]): The Azure AD token provider to use. Provide this or `azure_ad_token` for token-based authentication. model_capabilities (ModelCapabilities): The capabilities of the model if default resolved values are not correct. api_key (optional, str): The API key to use, use this if you are using key based authentication. It is optional if you are using Azure AD token based authentication or `AZURE_OPENAI_API_KEY` environment variable. timeout (optional, int): The timeout for the request in seconds. max_retries (optional, int): The maximum number of retries to attempt. To use this client, you must install the `azure` and `openai` extensions: .. code-block:: bash pip install "autogen-ext[openai,azure]==0.4.0.dev13" To use the client, you need to provide your deployment id, Azure Cognitive Services endpoint, api version, and model capabilities. For authentication, you can either provide an API key or an Azure Active Directory (AAD) token credential. The following code snippet shows how to use AAD authentication. The identity used must be assigned the `Cognitive Services OpenAI User <https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/role-based-access-control#cognitive-services-openai-user>`_ role. .. code-block:: python from autogen_ext.models.openai import AzureOpenAIChatCompletionClient from azure.identity import DefaultAzureCredential, get_bearer_token_provider # Create the token provider token_provider = get_bearer_token_provider(DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default") az_model_client = AzureOpenAIChatCompletionClient( azure_deployment="{your-azure-deployment}", model="{deployed-model, such as 'gpt-4o'}", api_version="2024-06-01", azure_endpoint="https://{your-custom-endpoint}.openai.azure.com/", azure_ad_token_provider=token_provider, # Optional if you choose key-based authentication. # api_key="sk-...", # For key-based authentication. `AZURE_OPENAI_API_KEY` environment variable can also be used instead. ) See `here <https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/managed-identity#chat-completions>`_ for how to use the Azure client directly or for more info. """ component_type = "model" component_config_schema = AzureOpenAIClientConfigurationConfigModel component_provider_override = "autogen_ext.models.openai.AzureOpenAIChatCompletionClient" def __init__(self, **kwargs: Unpack[AzureOpenAIClientConfiguration]): model_capabilities: Optional[ModelCapabilities] = None # type: ignore copied_args = dict(kwargs).copy() if "model_capabilities" in kwargs: model_capabilities = kwargs["model_capabilities"] del copied_args["model_capabilities"] model_info: Optional[ModelInfo] = None if "model_info" in kwargs: model_info = kwargs["model_info"] del copied_args["model_info"] client = _azure_openai_client_from_config(copied_args) create_args = _create_args_from_config(copied_args) self._raw_config: Dict[str, Any] = copied_args super().__init__( client=client, create_args=create_args, model_capabilities=model_capabilities, model_info=model_info ) def __getstate__(self) -> Dict[str, Any]: state = self.__dict__.copy() state["_client"] = None return state def __setstate__(self, state: Dict[str, Any]) -> None: self.__dict__.update(state) self._client = _azure_openai_client_from_config(state["_raw_config"])
[docs] def _to_config(self) -> AzureOpenAIClientConfigurationConfigModel: copied_config = self._raw_config.copy() if "azure_ad_token_provider" in copied_config: if not isinstance(copied_config["azure_ad_token_provider"], AzureTokenProvider): raise ValueError("azure_ad_token_provider must be a AzureTokenProvider to be component serialized") copied_config["azure_ad_token_provider"] = ( copied_config["azure_ad_token_provider"].dump_component().model_dump(exclude_none=True) ) return AzureOpenAIClientConfigurationConfigModel(**copied_config)
[docs] @classmethod def _from_config(cls, config: AzureOpenAIClientConfigurationConfigModel) -> Self: copied_config = config.model_copy().model_dump(exclude_none=True) if "azure_ad_token_provider" in copied_config: copied_config["azure_ad_token_provider"] = AzureTokenProvider.load_component( copied_config["azure_ad_token_provider"] ) return cls(**copied_config)