Source code for autogen_ext.tools.langchain._langchain_adapter
from __future__ import annotations
import asyncio
import inspect
from typing import TYPE_CHECKING, Any, Callable, Dict, Type, cast
from autogen_core import CancellationToken
from autogen_core.tools import BaseTool
from pydantic import BaseModel, Field, create_model
if TYPE_CHECKING:
from langchain_core.tools import BaseTool as LangChainTool
[docs]
class LangChainToolAdapter(BaseTool[BaseModel, Any]):
"""Allows you to wrap a LangChain tool and make it available to AutoGen.
.. note::
This class requires the :code:`langchain` extra for the :code:`autogen-ext` package.
Args:
langchain_tool (LangChainTool): A LangChain tool to wrap
Examples:
Use the `PythonAstREPLTool` from the `langchain_experimental` package to
create a tool that allows you to interact with a Pandas DataFrame.
.. code-block:: python
import asyncio
import pandas as pd
from langchain_experimental.tools.python.tool import PythonAstREPLTool
from autogen_ext.tools.langchain import LangChainToolAdapter
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_agentchat.messages import TextMessage
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.ui import Console
from autogen_core import CancellationToken
async def main() -> None:
df = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv") # type: ignore
tool = LangChainToolAdapter(PythonAstREPLTool(locals={"df": df}))
model_client = OpenAIChatCompletionClient(model="gpt-4o")
agent = AssistantAgent(
"assistant",
tools=[tool],
model_client=model_client,
system_message="Use the `df` variable to access the dataset.",
)
await Console(
agent.on_messages_stream(
[TextMessage(content="What's the average age of the passengers?", source="user")], CancellationToken()
)
)
asyncio.run(main())
"""
def __init__(self, langchain_tool: LangChainTool):
self._langchain_tool: LangChainTool = langchain_tool
# Extract name and description
name = self._langchain_tool.name
description = self._langchain_tool.description or ""
# Determine the callable method
if hasattr(self._langchain_tool, "func") and callable(self._langchain_tool.func): # type: ignore
assert self._langchain_tool.func is not None # type: ignore
self._callable: Callable[..., Any] = self._langchain_tool.func # type: ignore
elif hasattr(self._langchain_tool, "_run") and callable(self._langchain_tool._run): # type: ignore
self._callable: Callable[..., Any] = self._langchain_tool._run # type: ignore
else:
raise AttributeError(
f"The provided LangChain tool '{name}' does not have a callable 'func' or '_run' method."
)
# Determine args_type
if self._langchain_tool.args_schema: # pyright: ignore
args_type = self._langchain_tool.args_schema # pyright: ignore
else:
# Infer args_type from the callable's signature
sig = inspect.signature(cast(Callable[..., Any], self._callable)) # type: ignore
fields = {
k: (v.annotation, Field(...))
for k, v in sig.parameters.items()
if k != "self" and v.kind not in (inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD)
}
args_type = create_model(f"{name}Args", **fields) # type: ignore
# Note: type ignore is used due to a LangChain typing limitation
# Ensure args_type is a subclass of BaseModel
if not issubclass(args_type, BaseModel):
raise ValueError(f"Failed to create a valid Pydantic v2 model for {name}")
# Assume return_type as Any if not specified
return_type: Type[Any] = object
super().__init__(args_type, return_type, name, description)
[docs]
async def run(self, args: BaseModel, cancellation_token: CancellationToken) -> Any:
# Prepare arguments
kwargs = args.model_dump()
# Determine if the callable is asynchronous
if inspect.iscoroutinefunction(self._callable):
result = await self._callable(**kwargs)
else:
# Run in a thread to avoid blocking the event loop
result = await asyncio.to_thread(self._call_sync, kwargs)
return result
def _call_sync(self, kwargs: Dict[str, Any]) -> Any:
return self._callable(**kwargs)