autogen_ext.agents.openai#
- class OpenAIAssistantAgent(name: str, description: str, client: AsyncClient, model: str, instructions: str, tools: Iterable[Literal['code_interpreter', 'file_search'] | Tool | Callable[[...], Any] | Callable[[...], Awaitable[Any]]] | None = None, assistant_id: str | None = None, thread_id: str | None = None, metadata: object | None = None, response_format: AssistantResponseFormatOptionParam | None = None, temperature: float | None = None, tool_resources: ToolResources | None = None, top_p: float | None = None)[source]#
Bases:
BaseChatAgent
An agent implementation that uses the OpenAI Assistant API to generate responses.
This agent leverages the OpenAI Assistant API to create AI assistants with capabilities like:
Code interpretation and execution
File handling and search
Custom function calling
Multi-turn conversations
The agent maintains a thread of conversation and can use various tools including
Code interpreter: For executing code and working with files
File search: For searching through uploaded documents
Custom functions: For extending capabilities with user-defined tools
Key Features:
Supports multiple file formats including code, documents, images
Can handle up to 128 tools per assistant
Maintains conversation context in threads
Supports file uploads for code interpreter and search
Vector store integration for efficient file search
Automatic file parsing and embedding
Example
from openai import AsyncClient from autogen_core import CancellationToken import asyncio from autogen_ext.agents.openai import OpenAIAssistantAgent from autogen_agentchat.messages import TextMessage async def example(): cancellation_token = CancellationToken() # Create an OpenAI client client = AsyncClient(api_key="your-api-key", base_url="your-base-url") # Create an assistant with code interpreter assistant = OpenAIAssistantAgent( name="Python Helper", description="Helps with Python programming", client=client, model="gpt-4", instructions="You are a helpful Python programming assistant.", tools=["code_interpreter"], ) # Upload files for the assistant to use await assistant.on_upload_for_code_interpreter("data.csv", cancellation_token) # Get response from the assistant _response = await assistant.on_messages( [TextMessage(source="user", content="Analyze the data in data.csv")], cancellation_token ) # Clean up resources await assistant.delete_uploaded_files(cancellation_token) await assistant.delete_assistant(cancellation_token) asyncio.run(example())
- Parameters:
name (str) – Name of the assistant
description (str) – Description of the assistant’s purpose
client (AsyncClient) – OpenAI API client instance
model (str) – Model to use (e.g. “gpt-4”)
instructions (str) – System instructions for the assistant
tools (Optional[Iterable[Union[Literal["code_interpreter", "file_search"], Tool | Callable[..., Any] | Callable[..., Awaitable[Any]]]]]) – Tools the assistant can use
assistant_id (Optional[str]) – ID of existing assistant to use
metadata (Optional[object]) – Additional metadata for the assistant
response_format (Optional[AssistantResponseFormatOptionParam]) – Response format settings
temperature (Optional[float]) – Temperature for response generation
tool_resources (Optional[ToolResources]) – Additional tool configuration
top_p (Optional[float]) – Top p sampling parameter
- async delete_assistant(cancellation_token: CancellationToken) None [source]#
Delete the assistant if it was created by this instance.
- async delete_uploaded_files(cancellation_token: CancellationToken) None [source]#
Delete all files that were uploaded by this agent instance.
- async delete_vector_store(cancellation_token: CancellationToken) None [source]#
Delete the vector store if it was created by this instance.
- async handle_text_message(content: str, cancellation_token: CancellationToken) None [source]#
Handle regular text messages by adding them to the thread.
- property messages: AsyncMessages#
- async on_messages(messages: Sequence[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], cancellation_token: CancellationToken) Response [source]#
Handle incoming messages and return a response.
- async on_messages_stream(messages: Sequence[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]], cancellation_token: CancellationToken) AsyncGenerator[Annotated[ToolCallRequestEvent | ToolCallExecutionEvent, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')] | Response, None] [source]#
Handle incoming messages and return a response.
- async on_reset(cancellation_token: CancellationToken) None [source]#
Handle reset command by deleting new messages and runs since initialization.
- async on_upload_for_code_interpreter(file_paths: str | Iterable[str], cancellation_token: CancellationToken) None [source]#
Handle file uploads for the code interpreter.
- async on_upload_for_file_search(file_paths: str | Iterable[str], cancellation_token: CancellationToken) None [source]#
Handle file uploads for file search.
- property produced_message_types: Sequence[type[Annotated[TextMessage | MultiModalMessage | StopMessage | ToolCallSummaryMessage | HandoffMessage, FieldInfo(annotation=NoneType, required=True, discriminator='type')]]]#
The types of messages that the assistant agent produces.
- property runs: AsyncRuns#
- property threads: AsyncThreads#