Source code for autogen_core.components.tools._function_tool

import asyncio
import functools
from typing import Any, Callable

from pydantic import BaseModel

from ...base import CancellationToken
from .._function_utils import (
    args_base_model_from_signature,
    get_typed_signature,
)
from ._base import BaseTool


[docs] class FunctionTool(BaseTool[BaseModel, BaseModel]): """ Create custom tools by wrapping standard Python functions. `FunctionTool` offers an interface for executing Python functions either asynchronously or synchronously. Each function must include type annotations for all parameters and its return type. These annotations enable `FunctionTool` to generate a schema necessary for input validation, serialization, and for informing the LLM about expected parameters. When the LLM prepares a function call, it leverages this schema to generate arguments that align with the function's specifications. .. note:: It is the user's responsibility to verify that the tool's output type matches the expected type. Args: func (Callable[..., ReturnT | Awaitable[ReturnT]]): The function to wrap and expose as a tool. description (str): A description to inform the model of the function's purpose, specifying what it does and the context in which it should be called. name (str, optional): An optional custom name for the tool. Defaults to the function's original name if not provided. Example: .. code-block:: python import random from autogen_core.base import CancellationToken from autogen_core.components.tools import FunctionTool from typing_extensions import Annotated async def get_stock_price(ticker: str, date: Annotated[str, "Date in YYYY/MM/DD"]) -> float: # Simulates a stock price retrieval by returning a random float within a specified range. return random.uniform(10, 200) # Initialize a FunctionTool instance for retrieving stock prices. stock_price_tool = FunctionTool(get_stock_price, description="Fetch the stock price for a given ticker.") # Execute the tool with cancellation support. cancellation_token = CancellationToken() result = await stock_price_tool.run_json({"ticker": "AAPL", "date": "2021/01/01"}, cancellation_token) # Output the result as a formatted string. print(stock_price_tool.return_value_as_string(result)) """ def __init__(self, func: Callable[..., Any], description: str, name: str | None = None) -> None: self._func = func signature = get_typed_signature(func) func_name = name or func.__name__ args_model = args_base_model_from_signature(func_name + "args", signature) return_type = signature.return_annotation self._has_cancellation_support = "cancellation_token" in signature.parameters super().__init__(args_model, return_type, func_name, description)
[docs] async def run(self, args: BaseModel, cancellation_token: CancellationToken) -> Any: if asyncio.iscoroutinefunction(self._func): if self._has_cancellation_support: result = await self._func(**args.model_dump(), cancellation_token=cancellation_token) else: result = await self._func(**args.model_dump()) else: if self._has_cancellation_support: result = await asyncio.get_event_loop().run_in_executor( None, functools.partial( self._func, **args.model_dump(), cancellation_token=cancellation_token, ), ) else: future = asyncio.get_event_loop().run_in_executor( None, functools.partial(self._func, **args.model_dump()) ) cancellation_token.link_future(future) result = await future return result