Source code for autogen_core.components.tools._function_tool
import asyncio
import functools
from typing import Any, Callable
from pydantic import BaseModel
from ...base import CancellationToken
from .._function_utils import (
args_base_model_from_signature,
get_typed_signature,
)
from ._base import BaseTool
[docs]
class FunctionTool(BaseTool[BaseModel, BaseModel]):
"""
Create custom tools by wrapping standard Python functions.
`FunctionTool` offers an interface for executing Python functions either asynchronously or synchronously.
Each function must include type annotations for all parameters and its return type. These annotations
enable `FunctionTool` to generate a schema necessary for input validation, serialization, and for informing
the LLM about expected parameters. When the LLM prepares a function call, it leverages this schema to
generate arguments that align with the function's specifications.
.. note::
It is the user's responsibility to verify that the tool's output type matches the expected type.
Args:
func (Callable[..., ReturnT | Awaitable[ReturnT]]): The function to wrap and expose as a tool.
description (str): A description to inform the model of the function's purpose, specifying what
it does and the context in which it should be called.
name (str, optional): An optional custom name for the tool. Defaults to
the function's original name if not provided.
Example:
.. code-block:: python
import random
from autogen_core.base import CancellationToken
from autogen_core.components.tools import FunctionTool
from typing_extensions import Annotated
async def get_stock_price(ticker: str, date: Annotated[str, "Date in YYYY/MM/DD"]) -> float:
# Simulates a stock price retrieval by returning a random float within a specified range.
return random.uniform(10, 200)
# Initialize a FunctionTool instance for retrieving stock prices.
stock_price_tool = FunctionTool(get_stock_price, description="Fetch the stock price for a given ticker.")
# Execute the tool with cancellation support.
cancellation_token = CancellationToken()
result = await stock_price_tool.run_json({"ticker": "AAPL", "date": "2021/01/01"}, cancellation_token)
# Output the result as a formatted string.
print(stock_price_tool.return_value_as_string(result))
"""
def __init__(self, func: Callable[..., Any], description: str, name: str | None = None) -> None:
self._func = func
signature = get_typed_signature(func)
func_name = name or func.__name__
args_model = args_base_model_from_signature(func_name + "args", signature)
return_type = signature.return_annotation
self._has_cancellation_support = "cancellation_token" in signature.parameters
super().__init__(args_model, return_type, func_name, description)
[docs]
async def run(self, args: BaseModel, cancellation_token: CancellationToken) -> Any:
if asyncio.iscoroutinefunction(self._func):
if self._has_cancellation_support:
result = await self._func(**args.model_dump(), cancellation_token=cancellation_token)
else:
result = await self._func(**args.model_dump())
else:
if self._has_cancellation_support:
result = await asyncio.get_event_loop().run_in_executor(
None,
functools.partial(
self._func,
**args.model_dump(),
cancellation_token=cancellation_token,
),
)
else:
future = asyncio.get_event_loop().run_in_executor(
None, functools.partial(self._func, **args.model_dump())
)
cancellation_token.link_future(future)
result = await future
return result